
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, Jun. 2019                                         2824 
Copyright ⓒ 2019 KSII 

AutoScale: Adaptive QoS-Aware 
Container-based Cloud Applications 

Scheduling Framework 
 

Yao Sun1*, Lun Meng2 and Yunkui Song3 

1 School of Software Engineering, Jinling Institute of Technology, Nanjing 211169, China  
2 College of public administration, Hohai university, Nanjing 210098, China 
3 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China  

*Corresponding author: Lun Meng (m_l_01@163.com) 
 

Received July 6, 2018; revised August 29, 2018; accepted November 18, 2018;  
published June 30, 2019 

 

Abstract 
 

Container technologies are widely used in infrastructures to deploy and manage applications 
in cloud computing environment. As containers are light-weight software, the cluster of cloud 
applications can easily scale up or down to provide Internet-based services. Container-based 
applications can well deal with fluctuate workloads by dynamically adjusting physical 
resources. Current works of scheduling applications often construct applications’ performance 
models with collected historical training data, but these works with static models cannot 
self-adjust physical resources to meet the dynamic requirements of cloud computing. Thus, we 
propose a self-adaptive automatic container scheduling framework AutoScale for cloud 
applications, which uses a feedback-based approach to adjust physical resources by extending, 
contracting and migrating containers. First, a queue-based performance model for cloud 
applications is proposed to correlate performance and workloads. Second, a fuzzy Kalman 
filter is used to adjust the performance model’s parameters to accurately predict applications’ 
response time. Third, extension, contraction and migration strategies based on predicted 
response time are designed to schedule containers at runtime. Furthermore, we have 
implemented a framework AutoScale with container scheduling strategies. By comparing with 
current approaches in an experiment environment deployed with typical applications, we 
observe that AutoScale has advantages in predicting response time, and scheduling containers 
to guarantee that response time keeps stable in fluctuant workloads. 
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1. Introduction 

Nowadays, various applications are deployed on cloud computing to provide online services, 
and thus guaranteeing these applications’ Quality of Service (QoS) is important. Isolated 
independent software components are composed to build cloud applications. These 
components often communicate with others using standard protocols, e.g., RPC, SOAP, 
RESTFul. Scheduling cloud applications online in the granularity of a component is necessary, 
because an application’s various components have different requirements of physical 
resources. Containers (e.g., Docker) are widely adopted as cloud applications’ basic service 
infrastructures. Stand-alone lightweight containers include required codes and resources in 
executable software packages, which isolate applications from their deployment environment 
and avoid the interferences of different applications on the same platform. So, applications 
deployed in containers easily run on different platforms regardless of deployment environment. 
Administrators can efficiently start or stop containers with low operating latency and 
performance overhead, so it is easy to adjust containers’ resources to deal with fluctuate 
workloads in cloud computing. Current approaches construct an application’s performance 
model, estimate the resource requirements of the application, and then adjust the resources of 
virtual machines or physical hosts. However, system administrators modeling an application’s 
performance ought to be expert in the application. Furthermore, because the cloud computing 
environment (e.g., workloads, deployment) is changing overtime, setting a performance 
model’s parameters obtained from historical monitoring data is difficult.  

To address above issues, we propose a self-adaptive automatic container scheduling 
framework AutoScale for cloud applications, which uses a feedback-based approach to adjust 
physical resources by extending, contracting and migrating containers. First, a queue-based 
performance model for cloud applications is proposed to correlate performance and workloads. 
Second, a fuzzy Kalman filter is used to adjust the performance model’s parameters to 
accurately predict applications’ response time. Third, extension, contraction and migration 
strategies based on predicted response time are designed to schedule containers at runtime. 
Finally, we schedule resources by extending, contracting and migrating containers to achieve 
required response time. We list our contributions as follows: 
• Compared with current methods using domain knowledge, AutoScale adopts a Jackson 

queueing network to model applications’ performance automatically. AutoScale 
correlates performance and workloads, and then predict various applications’ response 
time without human intervention.  

• Compared with existing static performance models, AutoScale adopts a fuzzy Kalman 
filter to predicts response time, which adaptively adjusts applications’ parameters to deal 
with fluctuant workloads. Thus, AutoScale is suitable for dynamic cloud computing 
environment. 

• We have implemented a container scheduling framework AutoScale with our approach, 
and validate it in predicting response time and scheduling containers by conducting 
extensive experiments with typical applications. 

We organize the rest of our paper as follows. The recent related works are analyzed and 
reviewed in Section 2. The Jackson queueing network-based performance model is proposed 
in Section 3. AutoScale to automatically extend, contract and migrate containers is designed in 
Section 4. We conduct extensive experiments with typical applications to validate our 
approach in Section 5, and conclude this paper in Section 6. 
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2. Related Work 
Current approaches construct applications’ performance models with admission control, fuzzy 
logic and machine learning. Lama et al. correlate resources and performance, and then 
estimate required resources in the constraints of QoS [8]. Cao et al. predict the maximum 
number of concurrent workloads in the constraint of available resources, and then deny 
extensive requests with admission control [9]. Cherkasova et al. construct a performance 
model incorporating throughput and workloads, and then only accept suitable requests in the 
condition of limited resources [10]. Robertsson et al. predict performance with a linear model 
presenting the relationship between resources and performance, and then allocate required 
resources to guarantee QoS [11]. Xu et al. target at virtualized environment by taking VM’s 
performance overhead into the performance model, which adopt reinforcement learning to 
manage a cloud’s resources [12]. Karlsson et al. model the resource requirements of an 
application by isolating an application from surrounding environment, and then provide 
resources for the application adaptively [13]. Lama et al. adopt machine learning technologies 
to analyze interference among VMs, and then online provision physical resources for 
applications [14]. Alizadeh et al. calculate a performance model’s parameters according to 
collected historical monitoring data instances from networks, and then dynamically adjust 
network resources [15]. Thant et al. optimize scientific workflows in IaaS to minimize VM 
deployment span, cost and failure [16]. Some recent works also focus on scheduling 
containers. Alsched using a queue-based model defines the utility function of allocating 
resources to tasks, and then makes a scheduling decision based on the calculated utility [18]. 
Li et al. used a two-stage method to design an online scheduling mechanism and offline 
reconfiguration mechanism [19]. Paragon uses a multi-queueing model-based method to 
categorize heterogeneous resources and applications, analyzes their different resource 
requirements, and then calculates their utilities automatically [20]. Existing works use 
historical collected monitoring data to construct applications’ performance models and 
calculate their parameters, so are not suitable for cloud computing, where models and 
parameters are changing with dynamic workloads. Thus, we online model applications’ 
performance with a Jackson queueing, and then dynamically adopt a fuzzy Kalman filter to 
optimize the model’s performance. Our performance model requiring no historical data 
instances rapidly converges without human experience. Our approach efficiently schedules 
physical resources for applications deployed in containers to achieve desired response time, 
which can well deal with sudden workloads.  

3. Resource Provision Approach 
Response time is often adopted to measure the QoS of a cloud application. Since an 
application utilizes allocated physical resources to process requests, the resources and 
workloads of an application decide the response time. In this section, a Jackson queueing 
network is adopted as a performance model to correlate response time with workloads. Then, a 
Kalman filter is proposed to estimate the constructed performance model’s parameters. 
Furthermore, to improve prediction accuracy, a fuzzy logic method is adopted to online adjust 
the parameters of the performance model. Finally, to achieve desired response time, this 
section proposes scheduling strategies based on predicted response time to extend, contract 
and migrate containers at runtime.  
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3.1 Application Performance Model  
An application’s performance model correlating response time with workloads is used to 
predict response time. The procedure that a cloud application processes requests can be 
characterized as a Jackson queueing network as follows [1]:  
• An open-loop Jackson queueing network represents a cloud application with correlated 

application components; 
• The independent nodes of a Jackson queueing network represent the application 

components of a cloud application;  
• The edges of a Jackson queueing network represent data transmission with a message bus 

among application components; 
• A node representing an application component processes a request event; the processed 

event is sent to the next node representing an application component; the event leaving 
the network represents a response sent back. 

•  

 
Fig. 1. Cloud applications’ queuing network model 

 
The workflow of processing requests is described as follows: a cloud application accepts a 

request from a customer; the cloud application capsules the arrival request as an event; many 
components of the cloud application process the event sequentially; the cloud application 
sends back a response event to the customer. A cloud application distributes requests to many 
instances of an application component with a round robin strategy. Fig. 1 shows that a Jackson 
queueing network models a component-based cloud application.  In the figure, f represents the 
workflow of processing a request sent from a customer; ji represents application component j’s 
ith component instance; application components j1, j2, …, jn process a request sequentially, 
where n is the number of application components; application component instance jk (1≤k≤m) 
represents component j’s kth instance, where m is the number of component j’s instances.  

According to the Jackson queueing network-based performance model, this paper predicts 
an application’s response time in the condition of allocated physical resources. Application 
component j’s resource preference (rpj) presents the required intensive physical resource (e.g., 
disk I/O, CPU). First, rpj’s resource utilization is calculated as: 

∑i jijijj0j )Tγτu(u ××+= ，(0≤ 𝑢𝑗 ≤1)                                 (1) 
where rji is application component instance ji’s request number per second, and the 
concurrency number varies in Poisson distribution; Tji is ji’s execution time; 𝜏𝑗  is a correlation 
factor between resource utilization and request concurrency; u0j is rpj’s idle resource usage, 
when an application component accepting no request is idle. The execution time of processing 
a request flow f is calculated as:  
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where Tj is component j’s execution time, and d is request flow f ’s transmission time. 
An application’s u0j and rji are obtained by collecting monitoring data instances, and 𝜏𝑗  is 

easily estimated with domain knowledge, but parameters Tji and d are difficult to be 
calculated.  

3.2 Response Time Prediction 
Tji and d in formula (2) is necessary to predict response time, and thus this subsection introduce 
the method of calculating them. A Kalman filter is a linear forecasting method to predict the 
future value based on previous values, which recursively rectifies the prediction model by 
comparing the current monitored value with predicted value based on the prediction model [2]. 
Since a Kalman filter efficiently online evolves the prediction model without significant 
performance overhead, this paper adopts it to deal with fluctuant workloads in cloud 
computing. Thus, Tji and d are predicted with a Kalman filter as follows: 

1k k kX AX W+ = + ,                                                       (3) 
k k k kZ H X V= + ,                                                        (4) 

where Zk= ( , )T
jT d j∀  is an observed matrix recording the monitored execution time of 

components; Xk is a predicted matrix recording the predicted execution time of components; 
Hk= 0( , , , )T

j j jiu u B iγ ∀  records response time, resources usage and concurrent requests; 
~ (0, )kW N W  fitting for Gaussian distribution is a white noise excitation covariance matrix; 
~ (0, )kV N V  fitting for Gaussian distribution is a white noise measurement covariance matrix 

[3]. This paper online adjusts Wk and Vk, which change with deployment as follows: 
kW TW= ,                                                         (5) 

 kV UV= ,                                                          (6) 
where T and U are adjusting factors.  

The Kalman filter model adjusts the predicted matrix as follows: 
(1) Update X initialized with 𝑤𝑘−1 = 0：             

 𝑋�𝑘− = 𝐴𝑋�𝑘−1 ;                                                       (7) 
(2) Update covariance matrix 𝑃𝑘−：           

 𝑃𝑘− = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑊𝑘;                                               (8) 
(3) Calculate Kalman gain：     

 𝐾𝑘 = 𝑃𝑘−𝐻𝑘𝑇�𝐻𝑘𝑃𝑘−𝐻𝑘𝑇 + 𝑉𝑘� −1;                                      (9) 
(4) Rectify X：      

 𝑋�𝑘 = 𝑋�𝑘− + 𝐾𝑘�𝑧𝑘 − 𝐻𝑘𝑋�𝑘−�;                                        (10) 
(5) Rectify 𝑃𝑘：         

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−.                                             (11) 
The predicted value is iteratively rectified with a Kalman filter that only utilizes the current 

predicted value and the current monitored value in each iteration regardless of historical data 
instances.  
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3.3 Performance Model Adjustment 
The above response time prediction based on Kalman filter has the following issues:  
(1) The definition of a state transformation matrix has effect on the precision of predicting 

response time. However, it is difficult to define a precise transformation matrix, because 
an application component’s workloads vary in irregular nonlinearity; 

(2) A typical Kalman filter sets each monitored data instance with the same weight, so cannot 
train and update a precise model with increasing monitored values, which is not suitable 
for dynamic workloads in cloud computing environment; 

(3) Feedback-based methods are required to online adjust the excitation matrix and the noise 
matrix of the typical Kalman filter to process irregular changing values. 

To solve the above problems of the typical Kalman filter, this paper decreases the white 
noise residual error to online adjust the Kalman filter’s parameters. Formula (3) and (4) adopt 
fuzzy logic to rectify the Kalman filter by adjusting matrix W and V. The residual error means 
the degree that the monitored value deviates from the predicted value: 

r = ( ) - ( )Z k Z k ,                                                   (12) 
When the residual error’s variance exceeds the set threshold, the performance model is 

online rectified. This paper calculates the following residual error variance: 
( ) ( )k k k k

T TP r A H P H W H V= + + ,                                     (13) 
T and U in formula (5) and (6) are adjusted with a fuzzy logic function combining fuzzy 

rules and a subordinating degree function. This paper adopts a Sugeno fuzzy logic model [17] 
(i.e., TS) that are effective in nonlinearity to adjust the Kalman filter’s parameters. This paper 
defines the following fuzzy logic rules Ri:   

 𝑅𝑖 : 𝑖𝑓 𝑥1 𝑖𝑠 𝐴1𝑖  𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴2𝑖  𝑡ℎ𝑒𝑛 𝑢𝑖 = 𝑝1𝑖 𝑥1 + 𝑝2𝑖 𝑥2 + 𝑟𝑖  1 ≤ 𝑖 ≤ 𝑛         (14) 
where the ith fuzzy logic rule is Ri; the jth ’s input is xj; the ith rule’s output is ui; xj’s weight is pj

i; 
ri is a constant; n is the number of fuzzy logic rules. 

xj is an input of rule Ri, ui is the output of rule Ri, and then we calculate the overall result as: 
𝑈 = ∑ 𝑢𝑖𝑤𝑖𝑚

𝑖                                                      (15) 
where wi is ui’s weight, m is the number of fuzzy logic rules. 

We adopt formula (12) to calculate residual errors’ mean and variance, where n is the 
number of data instances in a period. 

avg = 1
𝑛
∑ 𝑟𝑖                                                     (16) 

cov = 1
𝑛
∑ 𝑟𝑖 𝑟𝑖𝑇                                                    (17) 

We calculate monitored residual errors’ variance with formula (17) and predict residual 
errors’ variance with formula (13), and then compare them. When the monitored mean is much 
bigger than zero, and the monitored variance is much bigger than the predicted variance, we 
adjust the noise matrix to improve the Kalman filter’s precision. To construct a fuzzy logic 
model, we input residual errors’ mean and variance, and then output noise matrixes W and V’s 
parameters U and T. Table 1 shows the following defined fuzzy logic rules as follows: 
(1) when the status is “Z”, U and T keep stable;  
(2) when the status is “S”, U decreases and T increases;  
(3) when the status is “L”, U increases and T decreases;  
(4) when the status is “M”, both U and T increase.  

Many optimal linearity equations are designed with the data instances obtained from a 
series of experiments. Two examples are listed as follows: 

𝑇 = 𝑃(𝑟) × 0.3 + 0.8，𝑈 = −𝑃(𝑟) × 0.2 + 1.9,                           (18) 
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where residual errors’ mean is equal to “0” and residual errors’ variance is low. 
𝑇 = −𝑃(𝑟) × 0.5 + 0.6，𝑈 = 𝑃(𝑟) × 0.1 + 1.4,                     (19) 

 
where residual errors’ mean is low and residual errors’ variance is high. 
To improve the Kalman filter’s precision, we adjust the Kalman filter’s parameters with 

many set rules trained with collected data instances from extensive experiments. Furthermore, 
various scenarios and applications can also adopt our approach with generated specific rules. 

 
Table 1. Rules of fuzzy logic  

                      Residual Errors’ Mean 
0 Low High 

Residual Error’s Variance 
 

0 S Z Z 
Low S Z L 
High L L M 

4. AutoScale: Design and Implementation 

4.1 Container Scheduling Strategy 
A container scheduling strategy is proposed to guarantee cloud applications’ desired response 
time in this subsection. The detailed container scheduling algorithm is described in Table 2. 
We initiate a Jackson Network Queueing model (JNQ) to predict response time under specific 
workloads (Line 1); initiate an Extended Kalman Filter (EKF) with parameters that are the 
maximum resource utilization of a host, the minimum resource utilization of a host, and the 
application’s maximum response time (Line 2); initialize an Fuzzy Logic Adaptive Controller 
(FLAC) to adjust EKF model’s parameters (Line 3); define migration actions to migrate 
containers, an expansion action function to expand containers, and a contraction action 
function to contract containers (Line 4). Then, we online adjust the performance model and 
predict response time in period (Line 5) as follows: adjusting the parameters of EKF with 
FLAC (Line 6); adjusting the parameters of the JNQ with EKF (Line 7); using the JNQ to 
predict response time (Line 8). The scheduling strategies of migration, expansion and 
contraction are described as follows: 
• Migration (Line 9): the scheduler stores a source container with the state of an application 

as an image, shuts down the source container and releases its resources, allocates 
resources for a container in a target physical machine with sufficient resources and starts 
the container image, when a container’s resource usage is less than the pre-defined upper 
threshold.  

• Expansion (Line 10): the scheduler allocates physical resources for a container, and then 
starts it in a chosen target physical machine, when a container’s resource usage is more 
than the pre-defined upper threshold.   

• Contraction (Line 11): the scheduler stops and releases some instances to reduce the 
number of instances, when an application’s many instances’ resource utilization is much 
lower than the predefined expected value.  
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Table 2. Container Scheduling Algorithm 
Container Scheduling Algorithm 
Input: Maximum resource utilization (MaxR), Minimum resource utilization (MinR), 
Response time threshold (RT) 
Output: Actions of migrating, expanding and contracting containers 
1. Initiate Jackson network queueing model: JNQ () 
2. Initiate an extended Kalman filter: EKF(X(0), Z(0)); 
3. Initiate a fuzzy logic adaptive controller: FLAC(P(r)); 
4. Define scheduling function Migrate (), Expand (), Contract (); 
5. While (a period) 

{ 
6.     Update the parameters of EKF with FLAC in formula (18) and (19): (U, T) = 

FLAC(P(r)); 
7.     Update the parameters of JNQ with EKF in formula (3) and (4): EKF(X(i), Z(i)); 
8.     Predict response time with JNQ in formula (1) and (2): B = JNQ (); 
9.     If iu∑ > MaxR && B < RT: 
            Then  Migrate (); 
10.     If B > RT: 
            Then  Expand (); 
11.     If ui < MinR: 
            Then  Contract (). 

} 

 

4.2. Framework Implementation 
As shown in Fig. 2, the workflow of our approach is described as follows: a user chooses or 
customizes a container deployment template; the application deployer verifies the template 
and sets a configuration for the container and application; the collector monitors each 
container with an agent deployed in each slave; the scheduler makes a scheduling plan based 
on collected monitoring data; the executor deploys container instances with applications in 
suitable slaves. The application deployer analyzes the correlations between components with 
automatic deployment tools (e.g., Puppet); records the analyzed results in a configuration file 
that decides the components’ dependencies and boot sequence; initializes a Jackson network 
queueing to model applications. The container scheduler deploys agents in container instances 
to collect the monitoring data of slave and containers, e.g., response time, resource utilization. 
According to monitored data instances, the scheduler adjusts the Jackson network queueing 
model with a Kalman filter and a fuzzy logic controller. The scheduler guarantees the 
performance (i.e., response time) of cloud applications by migrating, extending or contracting 
containers. Containers without allocating and restricting resources in advance can dynamically 
apply and release resources on demand at runtime. Thus, containers can improve the resource 
utilization of their located host. However, they perhaps have the serious problem of resource 
competition. For example, when the memory utilization of many containers in a host suddenly 
increase simultaneously, the failure of “Out of Memory Kill” happens, and then some 
containers are forcibly ceased. So, we restrict the resource utilization of every container to 
grantee the lower limits of a container’s resources.   

javascript:;
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Fig. 2. Container Scheduling Framework 

5. Experiment 

5.1 Deployment Environment 
Fig. 3 shows our experimental environment deployed with the cluster of eight hosts; a gigabit 
ethernet network connects these hosts to construct a cluster; each cloud application is 
deployed in a container with CenOS 7 and Docker 1.7; each host with Intel Core i7 CPU 
3.4GHz and an 8G memory deploys many applications in dockers. The deployment 
environment includes JMeter deployed on a workload generator node, Nginx deployed on a 
load balancer node, a Master node to manage four Slaver nodes, and MySQL deployed on a 
database node. The cloud application Web Serving of a cloud-based application benchmark 
suite Cloudsuite1 is deployed on four slaver nodes. 
 

Database

Slave 1

Slave 3
Load Balancer

Slave 2

Slave 4
Master

Generator

 
 

Fig. 3. Deployment environment 
 

1 http://cloudsuite.ch//pages/benchmarks/webserving/ 
                                                        

http://cloudsuite.ch/pages/benchmarks/webserving/
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5.2 Predicting Response Time  

5.2.1 Simulating Workloads with Trends 
This subsection simulates workloads with increasing concurrency, and then monitors response 
time in period. The response time corresponding to concurrent requests is predicted. Our 
approach is compared with existing typical methods in predicting response time to validate the 
effect. The compared existing methods are introduced and validated as follows. 
 

 
Fig. 4. Comparison in workloads with trends 

 
(1) RL: Reinforcement Learning  

A reinforcement learning method is adopted to construct a performance model and adjust 
the parameters of the model [4]. Fig. 4 shows the results of experiments in fluctuate workloads, 
where the performance model slowly converges during from the 150th second to the 200th 
second and from the 230th second to the 270th second. Furthermore, the reinforcement learning 
method requires a training dataset with a large scale of data instances, so the method cannot be 
applied in fluctuant workloads.  
(2) FL: Fuzzy Logic  

A neural fuzzy controller self-constructs its performance model’s structure, and online 
adjusts the parameters with online learning, which is designed to predict response time [5]. 
Since the parameters of a fuzzy controller have significant effect on a performance model’s 
accuracy and these parameters vary with workloads, it is difficult to set suitable parameters 
and online adjust these parameters, which requires domain knowledge and continuous analysis. 
Fig. 4 shows that the monitored response time significantly deviates the predicted response 
time during from the 50th second to the 100th second and from the 150th to the 300th second. It is 
because that this method does not online adjust parameters to adapt to changing workloads. 
(3) FC: Feedback Control  

A feedback-based control technology is adopted to design feedback-based loops [6]. This 
method can improve running applications’ stability, and train operating rules with low 
computation complexity. Fig. 4 shows that the method cannot accurately predict response time 
at beginning, because a long initialization period is required to construct a feedback controller.  
(4) AutoScale: Our Approach 

Fig. 4 shows that the error rate of our approach is less than 5%, and the errors of our 
approach always occur at beginning, because our approach ought to train the performance 
model in the initialization period. Note that our approach achieves less than 0.5% error rate 
during from the 200th second to the 250th second, when the simulated workloads significantly 
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increase. Thus, from the experimental results, we can see that our approach predicts response 
time with a high accuracy in fluctuant workloads. 

5.2.2 Simulating Workloads with Periodicity 
Periodic workloads are simulated in a time-of-day pattern, and then we compare our approach 
with RAMA [7] applied for periodic workloads in predicting response time. Fig. 5 and Fig. 6 
show that the error rate of our approach is lower than that of RAMA at beginning, and then the 
error rate of our approach decreases after initialization. The error rate of RAMA is about above 
10%, but that of our approach is about 5%. The error rate of our approach is much lower than 
that of RAMA in fluctuant workloads, because RAMA is not suitable for dynamic workloads. 
Thus, the accuracy of our approach in predicting response time is much better than that of 
RAMA in periodic workloads. To reduce so many errors at beginning, our approach decreases 
the sampling frequency to increase the size of the training dataset during initialization. 
 

 
Fig. 5. Comparison in workloads with periodicity 

 

 
Fig. 6. Comparison of error rates 

5.3 Scheduling Effect 
JMeter simulates cyclical workloads, stable workloads, rising workloads and decreasing 
workloads sequentially. We compare our approach with a typical admission control-based 
scheduling method [10] in the effect of scheduling resources. The admission controller cannot 
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adapt to fluctuant workloads, because it takes a long period to analyze suitable parameters. Six 
services are deployed on node Slave 1 and six services are deployed on node Slave 2 in the 
initialization period. Fig. 7 shows the experimental results, which are analyzed as follows: 
(1) Stable workloads (0-200th sec.): when 30 concurrent requests per second are simulated, the 
Kalman filter is initialized;  
(2) Dynamic workloads (200-300th sec.): when 30-60 concurrent requests per second are 
simulated, the response time keeps in a narrow scope as three services on Slave 1 are migrated 
to Slave 3 and Slave 4.  
(3) Stable workloads (300-400th sec.): when 50 concurrent requests per second are simulated, 
the response time keeps stable.  
(4) Rising workloads (400-700th sec.): when 50-100 concurrent requests per second are 
simulated, the response time decreases as services on Slave 1 and Slave 2 are expanded to 
other nodes.  
(5) Decreasing workloads (700-800th sec.): when 100-30 concurrent requests per second are 
simulated, some services are contracted to fewer nodes. 

The response time of our approach keeps stable in about 35 micro seconds, so our 
approach is much better than admission control-based scheduling method in dealing with 
fluctuant workloads. 

 
Fig. 7. Comparison of scheduling effect 

6. Conclusion 
Containers are widely adopted as infrastructures to support cloud applications providing 
Internet-based services. We propose a container-based scheduling approach to guarantee 
cloud applications’ performance in cloud computing environment with dynamic workloads. A 
performance model based on a Jackson queueing network is proposed to correlate 
performance and workloads. A fuzzy Kalman filter is adopted to adjust the performance 
model’s parameters to accurately predict applications’ response time. According to the 
constructed model and calculated parameters, we extend, contract and migrate containers to 
achieve desired response time at runtime. Furthermore, this paper has implemented AutoScale 
with scheduling strategies, deployed typical applications and validated it by simulating 
fluctuant workloads. By comparing with current works, AutoScale achieves much more 
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accurate results in predicting performance, and is effective in scheduling containers to 
guarantee that the response time keeps stable under fluctuant workloads. 
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