
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 5, May 2019              2629 
Copyright ⓒ 2019 KSII 

 

A General Design Method of 
Constructing Fully Homomorphic 
Encryption with Ciphertext Matrix  

Xinxia Song1, Zhigang Chen2,3 
1 College of Junior，Zhejiang Wanli University 

NingBo 315100, Zhejiang - P.R. China   

[e-mail: xinxia.song@foxmail.com] 
 2College of Electronic and Computer, Zhejiang Wanli University 

NingBo 315100, Zhejiang –P.R. China 
3State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of 

Sciences 

Beijing 100093 - P.R. China 

[e-mail: zhig.chen@foxmail.com] 

*Corresponding author: Zhigang Chen 

 

Received July 12, 2018; revised September 25, 2018; accepted December 5, 2018; published May 31, 2019 

 

Abstract 
 

It is important to construct fully homomorphic encryption with ciphertext matrix that makes 
fully homomorphic encryption become very nature and simple. We present a general design 
method of constructing fully homomorphic encryption whose ciphertext is matrix. By using 
this design method, we can deduce a fully homomorphic encryption scheme step by step 
based on a basic encryption scheme. The process of deduction is similar to solving equation 
and the final output result is a fully homomorphic encryption scheme with ciphertext matrix. 
The idea of constructing ciphertext matrix is ciphertexts stack, which don’t simply stack 
ciphertexts together but is to obtain the desired homomorphic property. We use decryption 
structure as tool to analyze homomorphic property and noise growth during homomorphic 
evaluation. By using this design method, we obtain three corresponding fully homomorphic 
encryption schemes. Our obtained fully homomorphic encryption schemes are more efficient. 
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Finally, we introduce the adversary advantage and improve the previous method of 
estimating concert parameters of fully homomorphic encryption. We give the concert 
parameters of these schemes. 

Keywords: Fully Homomorphic Encryption, Ciphertext Matrix, Ciphertexts Stack, 
Decryption Structure, Concert Parameters. 
 

1. Introduction 

Fully homomorphic encryption (FHE) can compute arbitrary function on encrypted data 

without secret key. Such special property enable FHE to be used in a lot of applications such 
as private cloud computing. FHE was first proposed by Rivest, Adleman and Dertouzos since 
1978 [1], and it had been an open hard problem in cryptography community until the first 
homomorphic encryption scheme was proposed by Gentry in 2009 [2]. Then some FHE 
schemes were proposed based on different mathematical hard problem. For example, the 
scheme is based on prime ideal [3], the schemes are based on integer [4-6] and the schemes 
are based on Learning with errors (LWE) or its ring variant (RLWE) [7-12].  

1.1 Related Work 

Among these FHE schemes, LWE-based FHE and RLWE-based FHE are very attractive 
since these schemes are simple and effective, as well as its security can be reduced to the 
worst case hardness of standard lattice problems that appear to be resistant to attack by both 
classical and quantum computers. Specially, Gentry, Sahai, and Waters (GSW) used the 
approximate eigenvector approach to propose a LWE-based FHE scheme in 2013 [10] whose 
ciphertext is a square matrix, and thus multiplication of ciphertexts is the multiplication of 
square matrixes that make homomorphic multiplication become very nature and simple. 

Before GSW scheme, since the LWE-based cryptosystem [15] itself supports additive 
homomorphism, the key point of constructing LWE-based FHE is to achieve multiplicative 
homomorphism. To construct LWE-based FHE, Brakerski and Vaikuntanathan introduced 
the critical technique of key switching in [7] to reduce the growth of resulting ciphertext size 
caused by homomorphic multiplication. However, key switching is expensive. On the one 
hand, after each homomorphic multiplication, we have to do key switching by multiplying 
the resulting ciphertext by a matrix generated in the process of key switching. On the other 
hand, the matrix of key switching is as one part of public key. For homomorphic evaluation 
with circuit depth L, the public key has to include L matrixes of key switching. So key 
switching needs a lot of space to store matrixes of key switching and greatly affects the 
computational efficiency. If the ciphertext is matrix, it does not need key switching. Thus it 
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is important to study how to construct the FHE scheme with ciphertext matrix. 

Moreover, GSW has an attractive feature observed in [19] that the noise growth is 
quasi-additive if we multiply GSW ciphertexts in sequence, which can be used to improve 
the approximation factor [19, 14] and bootstrapping algorithm [13,23,24]. We think this 
feature is related to the ciphertext structure that is called as decryption structure later.  

1.2 Our Contribution 

We present a general design method of constructing FHE whose ciphertext is matrix. By 
using this design method, we can deduce the FHE scheme step by step based on a basic 
encryption scheme. The process of deduction is similar to solving equation and the final 
output result is a FHE scheme. As long as the basic encryption scheme satisfies a condition, 
we can use this design method to construct FHE scheme based on the basic encryption 
scheme. For example, LWE-based encryption, RLWE-based encryption, NTRU over RLWE 
[18] and even Integer-based somewhat homomorphic encryption all satisfy conditions and 
can be as the basic encryption scheme used to construct corresponding FHE schemes. Thus 
the design method is general. Our design method reveals the essential of constructing FHE 
with ciphertext matrix.   

By using this design method, we obtain three corresponding FHE schemes based on 
LWE-based encryption scheme [15], RLWE-based encryption scheme [16,25] and NTRU 
over RLWE, respectively. We also use this method to construct a packing message FHE 
scheme from LWE. The result is the same as in [14]. It suffices to show that our design 
method is general.  

It is important to work out how to choose parameters of a FHE scheme to ensure 
correctness and security against lattice attacks. The performance and efficiency of FHE 
might be reflected by the size of parameters. In order to obtain the concert parameters of 
FHE, Gentry et.al applied to the LWE-security analysis of Lindner and Peikert [21] to 
analyze the dimension needed for different security levels [22]. They also analyzed the 
concert parameters of the BGV scheme [8]. As far as we know, there is not paper to provide 
the concert parameters of GSW as well as a concert comparison of GSW and other 
representative FHE scheme such as Bra [9]. We provide the concert parameters in appendix. 

Our techniques: Our design method is based on the observation that we can stack some 
LWE encryptions to form a ciphertext matrix, namely each row in matrix is a piece of 
ciphertext vector of LWE. We call this idea as ciphertexts stack. If we make the 
corresponding encryption scheme has homomorphic property, we thus can obtain a FHE 
scheme with ciphertext matrix.  

The idea of ciphertexts stack plays important role in our design method. It is inspired by 
the paper [17,20] in which the authors improve Regevs’s LWE-based cryptosystem that 
encrypt one bit at a time to a multi-bit version that encrypt a vector at a time. Their method 
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actually can be view as a type of ciphertexts stack. However ciphertexts stack does not mean 
that it just simply stack some ciphertext, but rather it needs to keep some structure.   

Moreover, decryption structure is as a tool used in our design method to analyze 
homomorphic property and noise growth. We unify three different decryption structures to 
one, and we call it the abstract decryption structure. Then we derive the decryption structure 
of homomorphic multiplication from the abstract decryption structure, and we call it 
expected decryption structure. It means that if the decryption structure of the multiplication 
of ciphertext has same structure as expected decryption structure, homomorphic property 
would be hold.  

To construct a FHE with ciphertext matrix, we assume the ciphertext matrix C formed by 
ciphertexts stack. According to the abstract decryption structure, we can derive the 
decryption structure with respect to C that enables to obtain the expected decryption 
structure. Namely, this decryption structure would result in homomorphic property. However, 
the noise growth is large in homomorphic multiplication with respect to this decryption 
structure. We thus need to adjust repeatedly decryption structure till the final decryption 
structure with respect to ciphertext C* enable us to obtain not only homomorphic property 
but also small noise growth during homomorphic operations. Moreover, from the view of 
ciphertexts stack, we can construct the encryption form of C* in which the part with respect 
to plaintext is view as an unknown variable M. The corresponding decryption structure of C* 
is called as the virtual decryption structure. Finally, we establish the equation between the 
final decryption structure and the virtual decryption structure about unknown variable M. 
We solve for M and eventually obtain concert encryption form of C*. Thus we achieve a 
FHE with ciphertext matrix.  

We assume the ciphertext is a polynomial, e.g., the ciphertext polynomial is taken from the 
encryption scheme NTRU over RLWE, our design method also can be applied to construct 
FHE. The resulting ciphertext would not a matrix but a vector in which each element is a 
polynomial. Homomorphic multiplication is the product of a matrix and a vector where the 
matrix is that a ciphertext vector is decomposed as binary representation. The appearance, an 
original ciphertext is transformed from a vector (e.g.,LWE and RLWE encryption) to a 
matrix or from a polynomial (e.g, NTRU over RLWE) to a vector, sufficiently show that it is 
the result of ciphertexts stack. The purpose of ciphertexts stack is to control growth in noise 
and achieve homomorphic property at the same time.   

        

2. The Design Method of Constructing FHE 

2.1 Decryption Structure 

For LWE-based encryption scheme, its decryption has the form  , mod mod 2q< > c s  

where c encrypt plaintext bit m∈{0,1} under the secret key s. Specially, there is an 
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important item in the decryption form, namely the inner product <c, s> = / 2q   ⋅ m + e 

mod q. It connects the ciphertext c with the corresponding plaintext m and the noise e in 
some sense, which enables us to analyze clearly homomorphic property and noise growth. 
We call <c, s> mod q as decryption structure for LWE-based encryption scheme. It is also 
hold for RLWE-based encryption scheme. Next we introduce three notions about decryption 
structure. 

At present, for LWE-based encryption scheme, there are three types of decryption 

structure such as / 2q   ⋅ m + e mod q [15] , m +2e mod q [7] and s ⋅ m+e mod q [18]. Both 

the first two exist in LWE-based encryption scheme and RLWE-based encryption scheme, 
while only the last one exists in the NTRU over RLWE where s is a secret polynomial. We 
unify above three types of decryption structure as one, namely x ⋅ m+e, which is called as 
abstract decryption structure. Here we denote plaintext and noise by m and e respectively, 
and we view x and e as unknown variables. The abstract decryption structure can be used to 
analyze what decryption structure with respect to the resulting ciphertext would result in 
additive and multiplicative homomorphism.  

Suppose two ciphertext c1, c2 encrypt m1, m2 with abstract decryption structure xm1+e1, 
x·m2+e2 respectively. To achieve additive homomorphism, the decryption structure with 
respect to adding c1 and c2 is required to keep the structure as x·(m1+m2) + e+, where e+ is the 
noise in the sum and x is an unknown variable. To achieve multiplicative homomorphism, 
the decryption structure with respect to multiplying c1 and c2 is required to keep the structure 
as x·(m1m2) + e×, where e× is the noise in the result of multiplying c1 and c2. We refer to 
x·(m1+m2) + e+ or x·(m1·m2) + e× as expected decryption structure for the addition and 
multiplication of ciphertexts. In other words, if the decryption structure of the resulting 
ciphertext has the same structure as the expected decryption structure during evaluation, 
homomorphic property would be hold without considering noise. 

To design a FHE scheme with ciphertext matrix, we firstly consider what form of 
decryption structure that the ciphertext matrix has would enable to obtain homomorphic 
property.     

Suppose a ciphertext matrix C encrypt m under the secret key s. From above description, 
the ciphertext C should have the decryption structure of form C·s = x·m+e (mod q) where x 
and e are two unknown variables. Note that additive homomorphism is obtained obviously, 
we thus only focus on how to obtain multiplicative homomorphism. For two ciphertexts C1 
and C2 with decryption structure Ci·s= x·mi+ei (mod q) for i=1, 2, their product has the 
decryption structure of form  C1·C2·s=C1·(xm2+e1)=C1·x·m2+C1·e1 (mod q). 

In order to achieve multiplicative homomorphism, the decryption structure of the product 
of C1 and C2 need to has the same structure as the expected decryption structure x·(m1·m2) + 

e×. If we set x = s, we have  
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C1·C2·s=C1·(s·m2+e1)=s·m1·m2+m2·e1+C1·e2=s·m1·m2+e× (mod q)   (1) 
where e×=m2·e1+C1·e2. Namely the decryption structure of the product of C1 and C2 has the 
same structure as the expected decryption structure x·(m1·m2) + e×. Thus when the ciphertext 
matrix C has the decryption structure of form C·s = s·m+e (mod q), homomorphic property 
would be hold without considering noise growth. The encryption corresponding to this 
decryption structure is called as zero homomorphic encryption that is similar to the 
conception of somewhat homomorphic encryption [2] and can be regarded as the extreme 
case of somewhat homomorphic encryption. 

If we consider noise, the growth in noise mainly depends 1 ∞
C according to the Equation 

(1). Thus above decryption structure will result in that even one homomorphic multiplication 
cannot be performed due to large noise growth. Thus we need to take some measure to 
suppress growth in noise caused by homomorphic multiplication. For example, we represent 
the ciphertext matrix C1 as binary, namely BitDecomp(C1), to reduce the noise magnitude in 
the product of ciphertext matrixes. Note that BitDecomp(C1) is the matrix formed by 
applying the operation to each row of C1 separately. Thus homomorphic multiplication is 
defined as BitDecomp(C1)·C2. However, the decryption structure corresponding to 
BitDecomp(C1)·C2 , namely BitDecomp(C1)·C2·s= BitDecomp(C1)·s·m2+BitDecomp(C1)·e2 

(mod q), is not the same structure as the expected decryption structure. It means that 
multiplicative homomorphism cannot be achieved. The reason is that BitDecomp(C1)  need 
the corresponding secret key Powerof2(s) rather than s.  

To achieve multiplicative homomorphism, we adjust the decryption structure of ciphertext 
matrix C as  

C·s = Powerof2(s)·m+ e (mod q).       (2) 
It is the final decryption structure that enables to achieve not only multiplicative 

homomorphism but also low noise growth during homomorphic operations. The dimension 
of C can be obtained by the dimension of s.  This step actually use ciphertexts stack to 
adjust decryption structure. That is we insert more LWE ciphertexts into original ciphertext 
matrix.   

 

2.2 Ciphertexts Stack 

LWE encryption has the form  c← (m, 0,……,0) + AT·r =(m, 0,……,0) + c0 (mod q)，

where m is a plaintext bit, r is a random vector and A=[b|A´] is a LWE matrix (A is also the 
public key). Here we denote the encryption of 0 by c0. Note that A·s=b-A´·s´=2e´ where e´ is 
an error vector and s=(1, s´) is a secret key vector. Note that RLWE encryption also has the 
similar form. 
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The idea of ciphertexts stack is inspired by [17,20] in which they proposed a multi-bit 
version of Regevs’s lattice-based cryptosystem, namely c←(m1,m2,…mt ,0…0)+ AT·r (mod 
q)= (m1,m2,…mt , 0,…0)+ [b1,b2,…bt |A´]T·r (mod q). Their idea actually can be viewed as a 
type of ciphertexts stack. 

Since we want to design a FHE scheme whose ciphertext is the matrix, the intuition is that 
the ciphertext matrix could be formed by stacking some LWE ciphertext vectors together 
(each row of ciphertext matrix is a LWE ciphertext vector). However, ciphertexts stack don’t 
simply stack these ciphertexts together but need to obtain the expected decryption structure, 
and thus achieve homomorphic property.  

Suppose ciphertext matrix C is formed by stacking some LWE ciphertext vectors. 
According to LWE encryption form，we have C←M + C0 (mod q)  where M is viewed as 
unknown variable with respect to plaintext m and each row in the matrix C0 is the encryption 
of 0. The decryption structure of the ciphertext matrix C has the form  C·s=M·s+ C0·s 
=M·s+ e (mod q), where e is an error vector. This decryption structure is called as the virtual 
decryption structure.  

Recall that the final decryption structure of the form (2) enables to achieve homomorphic 
property and low noise growth at the same time. If above virtual decryption structure has the 
same structure as the final decryption structure, the corresponding encryption scheme would 
be a FHE scheme with ciphertext matrix. Thus we establish the equation between virtual 
decryption structure and expected decryption structure, namely  M·s+ e = Powerof2(s)T·m+ 
e  (mod q) = G·s·m + e (mod q),where G=Powerof2(I)T. We denote identity matrix by I.  

Then we solve for unknown variable M from above equation and derive M=G·m. Thus we 
obtain the concert encryption form that is C←G·m + C0  (mod q).The decryption is same as 
LWE decryption. We choose the appropriate row from C   which corresponds to a LWE 
ciphertext, and decrypt it. The corresponding encryption scheme is a FHE scheme with 
ciphertext matrix. 
 

2.3 The Design Method 

At present, all of FHE schemes are built on some known encryption scheme that we call it 
the basic encryption scheme. The encryption form in the basic encryption scheme is required 
to meet a condition when we apply below design method to construct a FHE scheme. The 
condition is that the encryption has the form c←m+c0, where m is the plaintext and c0 is 
encryption of 0. All of encryption schemes such as LWE encryption [15], ring LWE 
encryption [16], NTRU encryption over ring LWE [18] as well as DGHV basic encryption 
scheme [4] meet this condition. It means that the corresponding FHE scheme with ciphertext 
matrix can be achieved by applying the design method on these basic encryption schemes.  

Let ciphertext C be a matrix or polynomial. In the case of ciphertext matrix, we need to 
construct it from the basic encryption scheme. We assume that ciphertext matrix C is formed 
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by stacking up a certain number of ciphertext vectors that encrypt plaintext m under secret 
key s using the basic encryption scheme (e.g, LWE-based encryption scheme). That is, each 
row in ciphertext matrix C is a piece of ciphertext vector. The decryption is same as the basic 
encryption scheme, i.e., the secret key s of the basic encryption scheme is used to decrypt 
some row in ciphertext matrix. Thus the ciphertext matrix C is the encryption of plaintext m 
under the secret key s. The corresponding decryption structure is C·s.  

In the case of ciphertext polynomial, we do not need to construct it as there is the known 
NTRU encryption scheme based on ring LWE whose ciphertext is a polynomial. The 
corresponding decryption structure also has the form C·s where C is a ciphertext polynomial 
and s is a secret key polynomial. Note that, in this case, we can skip step 1 and start directly 
from step 2 to construct FHE using below design method. The design method is described as 
follows. 
Step 1. Establish decryption structure of the ciphertext C that enable to achieve additive and 

multiplicative homomorphism without considering noise growth. From the session 
2.1, the decryption structure of the ciphertext C should has the form C·s =s·m+e 
(mod q), where e is a noise variable. The dimension of C can be obtained by the 
dimension of s. This form of decryption structure enables us to achieve potentially 
homomorphic property without considering noise growth. The encryption scheme 
with respect to this decryption structure is zero homomorphic encryption that is 
obtained by jumping directly to the step 3 and step 4. 

Step 2. Adjust decryption structure, and output the final decryption structure that enable to 
achieve simultaneously homomorphic property and low noise growth during 
homomorphic evaluation. From the section 2.1, the final decryption structure is 
derived as C*·s = Powerof2(s)T·m+e = G·s·m+e(mod q) where e is a noise variable 
and G=Powerof2(I)T. The dimension of C* and G can be obtained by the dimension 
of s. Note that C*is the expansion of C by inserting a certain number of ciphertexts 
into C. If C is a matrix, C*is also a matrix. If C is a polynomial, C* would be a 
vector. Since a vector can also be seen as a matrix, C*is viewed as a matrix in the 
later whether it is a matrix or vector. 

Step 3. Construct the form of ciphertext matrix C* by using ciphertexts stack. According to 
the ciphertext form of the basic encryption scheme, the ciphertext matrix C* can be 
represented as C*←M+C0(mod q) by using ciphertexts satck, where the matrix M is 
seen as an unknown variable with respect to plaintext m and C0 is a matrix in which 
each row is an encryption of 0 produced by the basic encryption scheme. The 
decryption structure of C* has the form C*·s←M·s+e (mod q) where e is a noise 
variable. This decryption structure is also called the virtual decryption structure. If 
we get the concert form of M, we can obtain the concert encryption algorithm. 

Step 4. Establish an equation about M between the virtual decryption structure and the final 
decryption structure, namely M·s+e = G·s·m+e (mod q). We derive M=G·m from 
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this equation. Thus the encryption is obtained as C*←G·m + C0 (mod q).  
Step 5. Decryption is the same as Regev’s decryption procedure that is applied to one row of 

C*. Let cl-1 be the l-1th row of C, namely the coefficient of the plaintext m is 2l-1 

where l= log 1q −   . Output 11

1 mod mod 2
2 ll q−− < , >  c s .  

For the security of the scheme outputted by this design method, on the one hand, G is the 
“primitive matrix”. On the other hand, each row of C* is a LWE encryption of plaintext bit m, 
thus the security can be obtained from the security of Regev’s encryption scheme. For each 
scheme obtained by this design method, we give the proof of security in detail in the later. 

 

3. A RLWE-based FHE Scheme with Ciphertext Matrix 

The basic encryption scheme that this FHE scheme built on is the RLWE-based  encryption 
scheme [16]. In the ring LWE encryption scheme, the secret key is a 2-dimensional vector 
s=(1,-s’) where s’ is a polynomial over R and is sampled uniformly from the error 
distribution. To generate the public key, choose a uniformly random element a∈Rq and a 
uniformly random small elements e∈R from the error distribution, and output the public key 
b’=(b=a ⋅ s′+e, a)∈Rq × Rq. To encrypt an n-bit message t∈{0,1}n, we use its bits as the 0-1 
coefficients of a polynomial m∈R2. The encryption algorithm then chooses three random 

small elements r，e1，e2∈R from the error distribution and outputs c←( / 2q   ⋅ m+br+e1, 

ar+e2 )=( / 2q   ⋅ m, 0)+b’ ⋅ r+e’ = m+c0∈Rq × Rq, where e’=(e1,e2) and m=( / 2q   ⋅ m, 0) 

and c0=b’ ⋅ r+e’. Thus the decryption structure is c ⋅ s=m ⋅ s +c0 ⋅ s= / 2q   ⋅ m+ r ⋅ e+e1-s’ ⋅ e2. 

As long as the coefficients of r ⋅ e+e1-s’ ⋅ e2 have magnitudes less than q/4, the message can 

be recovered by 2 , mod 2qq
 [< >] c s .The ring LWE encryption obviously satisfies the 

condition as the basic encryption scheme to construct FHE scheme using the design method. 
Next we firstly explain how to construct this FHE scheme using the design pattern, and then 
we give this FHE scheme. 
 

3.1 Using Design Method to Construct A RLWE-Based FHE Scheme with 

Ciphertext Matrix 

Assume that the ciphertext C is a matrix in which each row is an encryption produced by the 

RLWE-based encryption scheme under the secret key s=(1, -s’) where s’∈Rq.  
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In step 1, we can obtain the decryption structure of form C·s= s·m+e=
1
'

m
s

 
⋅ 

 
+e (mod q), 

where e is a noise variable. Here we can deduce that e is a 2-dimensional vector and the 

ciphertext C is a 2×2 matrix.  

By step 2, the final decryption structure is outputted and has the form   

C*·s= G·s·m+e =

1
2

2
'

2 '

2 '

l

l

m
s
s

s

 
 
 
 
 
  ⋅
 
 
 
 
 
 





+e (mod q)           (3) 

where e is a noise variable and l= log 1q −   .We can deduce that e is a 2(l+1)-dimensional 

vector and C*are 2(l+1)×2 matrix.  

By step 3 and step 4, we obtain the encryption that has the form of  

C*←Gm+C0=

1 0
2 0

2 0
0 1
0 2

0 2

l

l

m

 
 
 
 
 
 
 
 
 
 
 
  

 

 

+ C0  (mod q).       (4) 

This FHE scheme is given as follows in detail. 

 RLFHE.Setup( λ , L ):Input the security parameter λ  and the circuit level L. Choose 
a prime integer modulus q( λ ) ≥2 and a dimension parameter n( λ )≥1 which is a 
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power of two. Let ( ) 1nx xφ = +  be the nth cyclotomic polynomial. Let 

[ ] / ( )R x xφ=  and [ ] / ( )q qR x xφ=  . Let χ be the B-bounded discrete Gaussian 

distribution over the ring R. Let l= log 1q −   . Output params = (n, q, f(x), χ ). 

 RLFHE.SecretKeyGen(params): Sample s’← χ .Set sk= s = (1, -s’)∈Rq × Rq.  

 RLFHE.PublicKeyGen(params,sk): Sample a←Rq and e← χ . Compute b=a·s′+e. 

Set pk= b’=( b, a)∈Rq × Rq. 
 RLFHE.Enc(params, pk, m):To encrypt an n-bit message in {0,1}n, we use its bits 

as the 0-1 coefficients of a polynomial m∈R2. Sample R← 2( 1) 1lχ + × and E← 2( 1) 2lχ + × ，

where R is a 2(l+1)×1matrix and E is a 2(l+1)×2 matrix in which each entry is 

sampled from the discrete Gaussian distribution χ . Output the ciphertext： 

C←

1 0
2 0

2 0
0 1
0 2

0 2

l

l

m

 
 
 
 
 
 
 
 
 
 
 
  

 

 

+Rb’+ E∈ 2( 1) 2l
qR + × .      (5) 

 RLFHE.Dec(sk,C): Let cl be the l-th row of C, namely the coefficient of the 

plaintextm is 2l-1. Output 1

1 mod mod 2
2

c s− < , >  ll q . 

 RLFHE.Add(C1, C2): Output C1+C2∈ 2( 1) 2l
qR + × . 

 RLFHE.Mult(C1, C2): OutputBitDecomp(C1) ⋅ C2∈ 2( 1) 2l
qR + × .   

 
Lemma 3.1 (security). Let params = (n, q, f(x), χ ) be such that the ring LWE assumption 
holds. Then for any m ∈ R2 ， if s←RLFHE.SecretKeyGen(params), 
b’←RLFHE.PublicKeyGen(params, sk)，C←RLFHE.Enc(params, pk,m), its holds that 
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the joint distribution (b’, C) is computationally indistinguishable from uniform over
2 2( 1) 2l
q qR R + ×× . 

Proof. The security of above scheme includes two parts. One part is that we need to prove 
the public key is indistinguishable from uniform over Rq × Rq. Another part is that we need to 

prove the ciphertext matrix is indistinguishable from uniform over 2( 1) 2l
qR + × . For the first part, 

since the public key b’=(b, a) is a ring LWE instance, the public key is indistinguishable 
from uniform over Rq × Rq under the ring LWE assumption. For the second part, since each 
row in ciphertext matrix is a ciphertext produced by the ring LWE encryption scheme, the 

ciphertext matrix is indistinguishable from uniform over 2( 1) 2l
qR + × under the ring LWE 

assumption. Therefore, the joint distribution (b’, C) is computationally indistinguishable 

from uniform over 2 2( 1) 2l
q qR R + ×× . 

3.2 Analysis of Noise 

Below we analyze noise growth to show that above scheme is a leveled FHE scheme. We 
firstly analyze the noise magnitude at encryption and decryption and then analyze noise 
growth during homomorphic operations. 
 
3.2.1 Encryption Noise and Decryption Noise 

Lemma 4.2 (encryption noise). Let params = (n, q, f(x), Bχ ≤ ) be parameters for the 

above scheme. Sample s′← χ . Set s←(1, -s′ ). Let m∈R2 be any polynomial. Set 

b’←RLFHE.PublicKeyGen(params, sk) and C←RLFHE.Enc(params, pk, m). Then for 

some e∈ 2( 1)l
qR +  with 

∞
e ≤2nB2 +B，it holds that C ⋅ s=m ⋅ Powerof2(s)+e (mod q).We call e 

noise in ciphertext C. 
Proof. By definition 

C ⋅ s=m ⋅ Powerof2(s)+R·b’·s+E·s (mod q)    (6) 
                     =m ⋅ Powerof2(s)+R·e+ E·s (mod q) 

=m ⋅ Powerof2(s)+ e (mod q). 

Since Bχ ≤ , we have
∞

=e e
∞

⋅ + ⋅R E s ≤ e
∞ ∞

⋅ + ⋅R E s ≤nB2+B+nB2 =2nB2+B and 

the lemma follows. 
The above lemma means that the fresh ciphertext, namely the ciphertext is produced by 

the encryption and not the homomorphic operations, has the noise magnitude at most 2nB2 
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+B.   
Lemma 4.3 (decryption noise). Let χ  be the B-bounded discrete Gaussian distribution over 

the ring R. Sample s′← χ . Set s←(1, -s′ ). Let C∈ 2( 1) 2l
qR + ×  be such that   

 C ⋅ s =m ⋅ Powerof2(s) + e (mod q), 

with m∈R2 and 
∞

<e q/8. Then 

m←RLFHE.Dec(s,C).     (7) 
Proof. Let cl-1 be the l-1th row of C. Then we have <cl-1, s>=m ⋅ 2l-1+e(mod q) where |e|<q/8. 

Since q/4<2l-1<q/2, then 1/ 2le −

∞
<1/2. Therefore we have m← 1

1 mod l
l q −
−< , > / 2 c s , 

namely m←RLFHE.Dec(s,C). 
Above lemma means that the correctness of decryption is guaranteed as long as the noise 

in ciphertext matrix C has magnitude at most q/8. 
 

3.2.2 Analysis of Noise Growth 
Homomorphic addition and multiplication increase the noise in ciphertext. Since noises grow 
slightly with homomorphic additions and substantially with homomorphic multiplications, 
we just focus on the analysis of noise growth in homomorphic multiplication. 
Suppose C1 and C2 encrypt m1 and m2∈R2 under the secret key s respectively. It holds that Ci

⋅ s = mi ⋅ Powerof2(s)+ei for i∈{1,2} where i β
∞

≤e =2nB2+B. Let C×=BitDecomp(C1) ⋅ C2, 

namely C×is the homomorphic multiplication of C1 and C2. We have  
C× ⋅ s = BitDecomp(C1) ⋅ C2 ⋅ s 

= BitDecomp(C1) ⋅ (m2 ⋅ Powerof2(s) + e2) 
= m1m2 ⋅ Powerof2(s) + m2·e1 + BitDecomp(C1) ⋅ e2  
= m1m2 ⋅ Powerof2(s) + e×. 

Since i β
∞

≤e , we have ×

∞
≤e 2n(l+1) β +n β . Set N=n(l+1)，then ×

∞
≤e (2N+n) β . It 

is only the noise caused by one homomorphic multiplication of two fresh ciphertexts. After 
evaluating depth-L circuit (L levels of multiplication), the noise grows to at most (2N+n)L ⋅

β ～(2nlogq)L ⋅ β . It means that in order to guarantee correct decryption the final noise 

magnitude is required below q/8. 
For security, the best known algorithm for LWE runs in time approximately 2n/log(q/B). This 

result also holds for ring LWE. Therefore we choose B to be polynomial in n and q = 2nε

for 

every ε <1, we can derive L≈logq≈ nε
from (nN+1)L ⋅ β <q/8. It means that we could 
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homomorphically evaluate a circuit of polynomial depth using above scheme from ring LWE. 
Thus above scheme is a leveled FHE scheme. 

 

4. A NTRU-Type FHE with ciphertext matrix 

When we consider the ciphertext is a polynomial, there is a known encryption scheme, a 
NTRU scheme from ring LWE in [18], whose ciphertext is a polynomial. We take this 
NTRU scheme as the basic encryption scheme and  we construct FHE scheme based on it. 
In this NTRU basic encryption scheme, the secret key f=2f ’+1 is invertible in Rq where f ’ is 
sampled uniformly from the error distribution, and the public key is h=2g·f-1∈Rq where g is 

sampled uniformly from the error distribution. To encrypt a message m∈R2, sample s, e 

from the error distribution and output the ciphertext c←m+h·s+2e∈Rq. The decryption is 
m←c·f mod q mod 2∈ R2. Thus the decryption structure has the form c·f= m·f 
+2g·s+2e·f∈Rq where g·s+e·f is called as the noise in ciphertext. As long as the noise is 
below q/4, correct decryption is guaranteed. It is obvious that the NTRU basic encryption 
scheme meet the condition of constructing FHE scheme by using design method.  
 

4.1 Using Design Method to Construct A NTRU-Type FHE Scheme  

From the decryption structure of the NTRU basic encryption scheme, we know that this 
scheme is a zero homomorphic encryption by nature. Thus we start directly from step 2 to 
construct FHE by using design method.   

In step 2, the final decryption structure is derived as C*·f= Powerof2(f)T·m+e(mod q) 
where f is the secret key and e is a noise variable. It is obvious that C* is a vector of length 

l+1= log q   . By step 3 and step 4, we obtain the encryption of the form 

C*←Gm+C0=Powerof2(1)T·m+C0 =

1
2

2l

m

 
 
  ⋅
 
 
 



+ C0 (mod q). This FHE scheme is omitted in 

detail. 
 

5. A Packing Messages FHE from LWE 

By using the design method, we can construct a FHE scheme that encrypts a plaintext matrix 
instead of a plaintext bit, namely multiple plaintexts are packed into one ciphertext. This 
packing message FHE scheme obtained by using design method is the same as in [14]. It 
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suffices to show that this design method is general.  
The idea of constructing a packing message FHE scheme by using design method is to 

stack up a number of encryptions of plaintext vectors instead of a number of encryptions of 
plaintext bits. We first recall the basic encryption scheme that the packing message FHE 
scheme is based on. To encrypt a plaintext vector m=(m1,m2,…mt) with length t where mi∈

{0,1}, according to the encryption schemes proposed in [17,20], a matrix A’ m n
q

×∈  is 

chosen uniformly , and an error vector ei is chosen from a Gaussian distribution, and si
n
q∈

is chosen uniformly at random for 1≤i≤t. Let S’=[-s1,-s2,…,-st] be a matrix whose each 

column is the vector si. The secret key is S=[ ]'I
−S where I denote an t×t identity matrix. Set 

bi=A’si+ei
m
q∈ for 1≤i≤t. The public key is [b1,b2,…bt |A’]. Sample a vector r∈{0,1}m, the 

encryption of a plaintext vector m under the secret key S is c←( / 2q   ⋅ m, 

0,…0)+[b1,b2,…bt |A’]Tr (mod q). The corresponding decryption is 2 mod 2qq
 [ ⋅ ] c S . If we 

stack up a number of these ciphertexts produced by the above basic encryption to form a 
ciphertext matrix, it is possible to construct a packing message FHE scheme with ciphertext 
matrix. The intuition is that the corresponding plaintext may be a matrix. Below we describe 
how to use design method to deduce a packing message FHE scheme with ciphertext matrix. 

Let C be a (n+t)×(n+t) square matrix. Suppose each row of ciphertext matrix C is a 
ciphertext produced by the above basic encryption scheme under the (n+t)×t secret matrix S. 
From the step 1 described in design method, we can obtain the decryption structure 
C·S=S·m+e (mod q) where e is a noise variable. We can deduce that m is a t×t  square 
matrix and e denote a (n+t)×t matrix. From the step 2, the final decryption structure has the 
form of C*·S=Powerof2(S) ·m+e=G·S·m+e* (mod q). We can deduce that C* is a   
(n+t)(l+1)×(n+t) matrix and e* denote a (n+t)(l+1)×t matrix. According to the step 3, we 
construct ciphertext matrix C* by using ciphertexts stack and obtain the corresponding 
encryption form that is C*←M+C0 (mod q) where the unknown variable M denote a 
(n+t)(l+1)×(n+t) matrix with respect to plaintext and C0 is a (n+t)(l+1)×(n+t) matrix with 
respect to encryptions of 0. Thus the decryption structure of C*, namely virtual decryption 
structure, is C*·S←M·S+C0·S=M·S+e*(mod q) where e* is a noise variable.  

Then we establish an equation between the virtual decryption structure and the final 
decryption structure, namely M·S+e*=G·S·m+e*(mod q).We can solve for M from above 

equation and have M·S=G·S·m. Since M·S=M·[ ]'I
−S , then have M=[G·S·m|0]. Therefore the 

concert encryption form is obtained, namely C*←[G·S·m| 0]+C0(mod q). The decryption is 
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the same as the basic encryption scheme. Note that the result M=[G·S·m|0] may be just one 
possible answer for the equation M·S=G·S·m. We don’t know whether there are other 
answers.  

 
6. Conclusion 

We present a general design method of constructing FHE whose ciphertext is matrix. By 
using this design method, we can deduce the FHE scheme step by step based on a basic 
encryption scheme. The process of deduction is similar to solving equation and the final 
output result is a FHE scheme. 

By using this design method, we obtain three corresponding FHE schemes. Our obtained 
FHE schemes are more efficient than GSW. In addition, we also use this method to construct 
a packing message FHE scheme from LWE. The result is the same as in [14]. It suffices to 
show that our design method is general. 
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Appendix 

A. Analysis of Concert Parameters 

In order to be consistent with the practical application, we improve the method of estimating 
concert parameters for LWE-based FHE scheme in [22], and we introduce the advantage of 
adversary. Namely, given security level, advantage of adversary and Gaussian parameter, we 
can derive dimension n, modulus q and the circuit depth L from some formulas and thus get 
corresponding concert public key size, secret key size and ciphertext size. We apply this 
method of estimating concert parameters in our three FHE schemes, two GSW13 schemes 
and two Bra12 schemes. We call our three FHE schemes, namely LWE-based scheme, ring 
LWE-based scheme and NTRU scheme, obtained by using the design method as 
matrix-LWE scheme, matrix-RLWE scheme and matrix-NTRU scheme respectively. We call 
the two GSW13 schemes, namely LWE-based GSW13 scheme and ring LWE-based GSW13 
scheme, as GSW13-LWE scheme and GSW13-RLWE scheme respectively. Even though 
Bra12 scheme is different from our schemes and GSW13 scheme, we still consider it and 
compare its corresponding parameters size with other schemes in order to study extensively. 
We call the two Bra12 schemes, namely LWE-based Bra12 scheme and ring LWE-based 
Bra12 scheme, as Bra12-LWE scheme and Bra12-RLWE scheme respectively. 

A.1  Parameters Properties 

Here we list the parameters properties of the schemes described above in Table 1. Note that 
only Bra12 scheme has evaluation keys used in key switching process while other schemes 
don’t need to do this operation. Here we don’t assume the circular security, thus each 
multiplicative level need a secret key and evaluation key. We use L to denote the circuit 
depth. 

Table 1. The parameters properties of seven FHE schemes 

 Public Key Secret Key Ciphertext Evaluation Keys 

matrix-RLWE 2nlogq (n+1)logB 4nlog2q  

matrix-NTRU  nlogq nlog(2B) nlog2q  

http://dx.doi.org/doi:10.1007/978-3-662-53887-6_1
http://dx.doi.org/doi:10.1007/978-3-642-45239-0_4
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matrix-LWE 2n(n+1)log2q (n+1)logq (n+1)2log2q  

GSW13-RLWE 2n log q     (n+1) 2log q    4n 3log q     

GSW13-LWE 2n(n+1)log2q (n+l) 2log q    (n+1)2 3log q     

Bra12-RLWE 2n log q    (L+1)(n+l)logB 2n log q    6Ln 2log q    

Bra12-LWE 2n(n+1)log2q (L+1)(n+l) log q    (n+1) log q    L(n+1)3 4log q    
      

Obviously, the parameters sizes of the schemes base on ring LWE are smaller than the 
schemes based on LWE. Thus we only consider the comparison of the schemes based on the 
same hard problem, e.g., ring LWE or LWE. The parameters properties listed in table 1 show 
that the sizes of ciphertexts and secret keys of our schemes are smaller by a factor of about 
logq than the corresponding GSW schemes. For Bra12 schemes (over ring LWE or LWE), 
the disadvantage is that the sizes of the public key and secret key are larger than other 
schemes due to including L evaluation keys and secret keys respectively. However its 
advantage is that the sizes of ciphertexts are smaller by a factor of about logq and log2q than 
matrix-RLWE (or matrix-NTRU) and  GSW13-RLWE respectively.   
 

A.2  The Relation of Dimension and Modulus  

In order to estimate the hardness of LWE for a concert set of parameters, we apply the 
distinguishing attack against LWE as in [20]. Since it is unknown how to exploit the ring 
structure of ring LWE to improve lattice reduction, the distinguishing attack can also be 
applied in ring LWE by embedding ring LWE instance into a LWE lattice. 

The distinguishing attack on LWE means that an adversary distinguishes an LWE instance 

(AT, b=ATs+e) from uniform with some noticeable advantage, where n m
q
×∈A   and s∈ n

q  

are chosen uniformly and e is sampled from a Gaussian distribution with standard deviation 
r .  
To estimate the concert parameters for a FHE scheme, a natural way is that the security level 
λ  and Gaussian parameter r are firstly be fixed, then the modulus q is derived from the 
circuit depth required to perform homomorphic evaluation as well as the correctness of 
decryption, and then the dimension n can be determined by the above parameters such that 
the scheme has the corresponding security level. Thus the dimension n is the function of the 
parameters security level λ , Gaussian parameter r and the modulus q. This function was 
given in the paper [22]. However, this function doesn’t reflect the advantage of adversary. 
One may need to consider the different advantage of adversary in practical application. 
Therefore, we improve the function by introducing the advantage of adversary.  
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Suppose an adversary has advantage adv. The length of short vector achieved by the 

adversary is ( / ) ln(1/ ) /q r advβ π= from [21]. In addition, root-Hermite factor δ  and the 

length of short vector β  has the relation 2(log )/ (4 log )2 n qβδ = =
2(log (( / ) ln(1/ )/ ))/ (4 log )2 q r adv n qπ    [20]. 

Then according to the equation log (time)=1.8/log( δ )–110 described in [21], we have  

         n ≥log2 ((q/r) ⋅ ln(1/ ) /adv π ) ⋅ ( log(2 )advl ⋅ +110) / (7.2 ⋅ logq)          (3) 

It means that given security level λ , Gaussian parameter r and the advantage of adversary 
adv we can derive the minimal value of the dimension n for a modulus q from equation (3). 
We provide some values in Table 2. 

 
Table 2. The minimal value of the dimension n for different modulus q to ensure 80 bit security with 
Gaussian parameter r =8 and the adversary advantage adv=2-32,2-80  

log q 13 22 42 80 158 313 

n,  adv=2-32 171.64 363.27 798.12 1629.90 3340.41 6741.22 

n，adv=2-80 123.34 257.19 560.23 1139.48 2330.43 4698.12 
        

Next we consider how to estimate the value of modulus q and concert parameters. 
 

A.3  Concert Parameters 

In the leveled fully homomorphic encryption scheme, the modulus q should ensure that the 
circuit depth is enough to perform the required homomorphic evaluation as well as the 
correctness of decryption. In order to ensure the correctness of homomorphic evaluation on 
circuit depth L, we below give the condition of correct decryption for each scheme that we 

consider above. The matrix-RLWE scheme need to satisfy condition (2N+n)L ⋅ 1β <q/8, where 

N=n(l+1) and 1β =2nB2+B. The matrix-NTRU scheme needs to satisfy condition (N+n)L ⋅ 2β

<q/8, where 2β =4nB2+nB. The matrix-LWE scheme needs to satisfy condition (N+n+2)L ⋅ 3β

<q/8, where 3β =2nBlogq. The GSW13-RLWE scheme needs to satisfy condition (2N+n)L ⋅

1β <q/8 that is the same as the condition in the matrix-RLWE scheme. The GSW13-LWE 

scheme needs to satisfy condition (N+n+2)L ⋅ 3β <q/8, where 3β =2nBlogq. The Bra12-RLWE 
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scheme needs to satisfy condition |t1
L ⋅ 4β + L ⋅ t1

L-1 ⋅ t2|< / 2
2
q 

  
, where t1=2n2B+8n, 

t2=n2B(4+B)+2nBlogq and 2
4 2β = +n B B  The Bra12-LWE scheme needs to satisfy 

condition |t1
L ⋅ 3β +L ⋅ t1

L-1 ⋅ t2 |< / 2
2
q 

  
, where t1= 4( 1) logn q+    , t2=2 32( 1) logn q+    B and 

3β =2nBlogq.  

Fix security level and adversarial advantage, we can obtain the concert parameters values for 
different circuit depth. These concert parameters values are listed in Table 3 when the 
security level is chosen as 80 bit and the adversarial advantage is chosen as 2-80. The unit of 
measurement is Kilobyte. 

The data in table 3 show that the size of public key and secret key in our schemes are smaller 
than other schemes. Specially, the size of public key and secret key in our matrix-NTRU 
scheme are the smallest among these schemes. The reason is that the public key and secret 
key are only a polynomial respectively in matrix-NTRU scheme. In terms of the size of 
ciphertext, Bra scheme has smallest size among these schemes. The reason is that the 
ciphertext is only a vector while the ciphertext is a matrix in other schemes. The sizes of 
ciphertexts in our three schemes are smaller than it in GSW schemes. The reason is that the 
dimension of ciphertext matrix in our schemes is smaller than it in GSW schemes. 

Table 3. The concert parameters values of seven FHE schemes 
 Circuit 

Depth 
Public Key Evaluation Keys 

Secret 
Key 

Ciphertext 

matrix-RLWE 
L=0 1.68 0 0.2 80.80 
L=5 51.27 0 1.2 12305.41 
L=10 199.45 0 2.39 93344.52 

matrix-NTRU 
L=0 1.00 0 0.26 18.09 
L=5 23.67 0 1.36 1893.65 
L=10 92.17 0 2.71 14377.80 

matrix-LWE 

L=0 9606.79 0 0.77 4821.04 
L=5 9377466 0 23.93 4691509 
L=10 139063692.

91 
0 92.14 69552578.60 

GSW-RLWE 
L=0 1.68 0 20.27 1939.30 
L=5 51.27 0 3078.11 1476649.65 
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L=10 199.45 0 23342.8
1 

21842616.64 

GSW-LWE 

L=0 9606.79 0 17.64 110883.94 
L=5 9377466.00 0 2776.00 544215043.81 
L=10 139063692.

91 
0 20732.1

4 
15649330184.
86 

Bra-RLWE 
L=0 2.015 0 0.22 2.02 
L=5 115.86 311082.46 10.91 115.86 
L=10 442.01 4601346.26 39.34 442.01 

Bra-LWE 

L=0 6339.80 0 0.62 0.62 
L=5 17437727.7

1 
1574046855853775.20 195.80 32.63 

L=10 238165854.
75 

302393085215490500.
00 

1326.41 120.58 
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