Fig. 2. Commercial magnetron modules with a difference cooling water connection (a) central inlet (b) peripheral inlet.
Fig. 1. A numerical model of a rotating magnetron cathode.
Fig. 3. Schematic diagram of a commercial magnetron sputtering system with a heart type magnet array and electro magnets.
Fig. 4. Relative motion of magnet and balancing module to cooling water connection
Fig. 5. Simulated cooling water traces from (a) inlet (b) outlet at right angle position
Fig. 6. Simulated cooling water traces from (a) inlet (b) outlet at in-line position
Fig. 7. Calculated torque variation with rotation angle
Fig. 8. Heat flux with moving boundary condition
Fig. 10. Cooling water flow and heat transfer analysis results (a) steady state temperature profile (b) flow pattern of a cooling water (c) traces of cooling water from connection line.
Fig. 11. Simulated results at 30 kW input power and 60 rpm with cooling water flow rate 36.6 liter/min. (a) water flow velocity, (b) temperature.
Fig. 12. Used multi-track magnet array module showing heat affected surfaces of magnets and fixing guide.
Fig. 13. Water drop type magnetron and discharge affected target surface profile.
Fig. 14. Heat flux and temperature distribution of the two rotating modules (30 kW, 60 rpm, cooling water 1kgf/cm2 and 5 m/s.
Fig. 9. (a) Calculated transient temperature profile at 2.57 sec after ignition of plasma (b) temperature graph along radial cut line.
References
- M. Hur, D. Lee, S. Yang and H. Lee, Appl. Sci. Conv. Technol. 27 (2018) 14 https://doi.org/10.5757/ASCT.2018.27.1.14
- H. Choe, Appl. Sci. Conv. Technol. 26 (2015) 114 https://doi.org/10.5757/ASCT.2017.26.5.114
- D. Kwon and N. Yoon, Appl. Sci. Conv. Technol. 24 (2015) 237 https://doi.org/10.5757/ASCT.2015.24.6.237
- J. Joo, Appl. Sci. Conv. Technol. 23 (2014) 169 https://doi.org/10.5757/ASCT.2014.23.4.169
- J. Joo, Appl. Sci. Conv. Technol. 23 (2014) 145 https://doi.org/10.5757/ASCT.2014.23.3.145
- E. Kusano and N. Kikuchi, Thin Solid Films 634 (2017) 73 https://doi.org/10.1016/j.tsf.2017.05.014
- J. Joo, Appl. Sci. Conv. Technol. 23 (2014) 179 https://doi.org/10.5757/ASCT.2014.23.4.179
- V. I. Shapovalov, E. A. Minzhulina, Vacuum 161 (2019) 324 https://doi.org/10.1016/j.vacuum.2019.01.001
- J. Joo, J. Kor. Inst. Surf. Eng. 41 (2008) 274 https://doi.org/10.5695/JKISE.2008.41.6.274
- ESI corp. CFD-ACE 2017.5 User manual, 173
- J. Jee and J. Joo, J. Kor. Inst. Surf. Eng. 41 (2008) 94 https://doi.org/10.5695/JKISE.2008.41.3.094
- K. Steenbeck, Thin Solid Films, 123 (1985) 239 https://doi.org/10.1016/0040-6090(85)90164-6
- J. Choi and J. Joo, J. Kor. Inst. Surf. Eng. 45 (2012) 75 https://doi.org/10.5695/JKISE.2012.45.2.075