DOI QR코드

DOI QR Code

Synergistic Effect of the MnO Catalyst and Porous Carbon Matrix for High Energy Density Vanadium Redox Flow Battery

고에너지 밀도 바나듐 레독스 흐름 전지를 위한 망간산화물 촉매와 다공성 탄소 기재의 시너지 효과

  • Kim, Minsung (Department of Metallurgical Engineering, Pukyong National University) ;
  • Ko, Minseong (Department of Metallurgical Engineering, Pukyong National University)
  • 김민성 (부경대학교 금속공학과) ;
  • 고민성 (부경대학교 금속공학과)
  • Received : 2019.06.07
  • Accepted : 2019.06.25
  • Published : 2019.06.30

Abstract

The carbon electrode was modified through manganese-catalyzed hydrogenation method for high energy density vanadium redox flow battery (VRFB). During the catalytic hydrogenation, the manganese oxide deposited at the surface of the carbon electrode stimulated the conversion reaction from carbon to methane gas. This reaction causes the penetration of the manganese and excavates a number of cavities at electrode surface, which increases the electrochemical activity by inducing additional electrochemically active site. The formation of the porous surface was confirmed by the scanning electron microscopy (SEM) images. Finally, the electrochemical performance test of the electrode with the porous surface showed lower polarization and high reversibility in the cathodic reaction compared to the conventional electrode.

Keywords

PMGHBJ_2019_v52n3_150_f0001.png 이미지

Fig. 1. Schematic of process for forming porous surface of carbon electrode

PMGHBJ_2019_v52n3_150_f0002.png 이미지

Fig. 3. Electrode image by EDS(Energy Dispersive Spectrometer) SEM after hydrogenation

PMGHBJ_2019_v52n3_150_f0003.png 이미지

Fig. 6. CV curves at different scan rates: a) Porous Electrode. b) The ratio of the positive and negative peak current density values with different scan rates. Plots of the redox peak current density versus the square root of scan rate for c) Bare & Porous Electrode

PMGHBJ_2019_v52n3_150_f0004.png 이미지

Fig. 2. a) Bare electrode b) Electrodes deposited with a metal precursor through a hydrothermal method c) After the heat treatment of oxygen atmosphere, the electrode deposited with Mn-oxide d) The porous surface electrode formed after hydrogenation

PMGHBJ_2019_v52n3_150_f0005.png 이미지

Fig. 4. a) XRD patterns of each electrode. The each XRD peaks are well coincident with b) The reference data of Mn-σ(ICSD : 98-016-4349), Mn2O3(ICSD : 98-004-3464), MnO(ICSD : 98-016-2039)

PMGHBJ_2019_v52n3_150_f0006.png 이미지

Fig. 5. a) Cyclic voltammetry curves of the carbon felt improved by each process. b) CV curves of the porous electrode with different temperature. c) CV curves of the porous electrode with different time

Table 1. The results of cyclic voltammetry curves of the carbon felt improved by each process

PMGHBJ_2019_v52n3_150_t0001.png 이미지

References

  1. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 111 (2011) 3577-3613. https://doi.org/10.1021/cr100290v
  2. W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Recent progress in redox flow battery research and development, Adv. Funct. Mater., 23 (2013) 970-986. https://doi.org/10.1002/adfm.201200694
  3. H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review, Prog. Nat. Sci., 19 (2009) 291-312. https://doi.org/10.1016/j.pnsc.2008.07.014
  4. X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy, 137 (2015) 511-536. https://doi.org/10.1016/j.apenergy.2014.09.081
  5. M. Skyllas-Kazacos, M.H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, M. Saleem, Progress in flow battery research and development, J. Electrochem. Soc., 158 (2011) R55-R79. https://doi.org/10.1149/1.3599565
  6. J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, The chemistry of redox-flow batteries, Angew. Chem. Int. Ed., 54 (2015) 9776-9809. https://doi.org/10.1002/anie.201410823
  7. C. Ponce de Leon, A. Frias-Ferrer, J. Gonzalez-Garcia, D. A. Szanto and F. C. Walsh, Redox flow cells for energy conversion, J. Power Sources, 160 (2006) 716-732. https://doi.org/10.1016/j.jpowsour.2006.02.095
  8. P. Singh and B. Jonshagen, Zinc-bromine battery for energy storage, J. Power Sources, 35 (1991) 405-410. https://doi.org/10.1016/0378-7753(91)80059-7
  9. B. Fang, S. Iwasa, Y. Wei, T. Arai and M. Kumagai, A study of the Ce(III)/Ce(IV) redox couple for redox flow battery application, Electrochim. Acta., 47 (2002) 3971-3976. https://doi.org/10.1016/S0013-4686(02)00370-5
  10. E. Sum and M. Skyllas-Kazacos, A study of the V(II)/V(III) redox couple for redox flow cell applications, J. Power Sources, 15 (1985) 179-190. https://doi.org/10.1016/0378-7753(85)80071-9
  11. E. Sum, M. Rychcik and M. Skyllas-Kazacos, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery, J. Power Sources, 16 (1985) 85-95. https://doi.org/10.1016/0378-7753(85)80082-3
  12. E. Sum, M. Skyllas-Kazacos, A study of the V(II)/V(III) redox couple for redox flow cell applications, J. Power Sources, 15 (1985) 179-190. https://doi.org/10.1016/0378-7753(85)80071-9
  13. M. Rychcik, M. Skyllas-Kazacos, Characteristics of a new all-vanadium redox flow battery, J. Power Sources, 22 (1988) 59-67. https://doi.org/10.1016/0378-7753(88)80005-3
  14. B. Sun and M. Skyllas-Kazacos, Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution, Electrochim. Acta., 36 (1991) 513-517. https://doi.org/10.1016/0013-4686(91)85135-T
  15. K.J Kim, G.J Jeong, Y.J Kim, Novel catalytic effects of $Mn_3O_4$ for all vanadium redox flow batteries, Chem. Commun., 48 (2012) 5455-5457. https://doi.org/10.1039/c2cc31433a
  16. W. Li, Z. Zhang, Y. Tang, H. Bian, T.W Ng, W. Zhang, C.S Lee, Graphene-Nanowall-Decorated Carbon Felt with ${VO_2}^+/VO^{2+}$ Excellent Electrochemical Activity Toward Couple for All Vanadium Redox Flow Battery, Adv. Sci., 3 (2016) 1500276. https://doi.org/10.1002/advs.201500276