Fig. 1. Picture of the outer side of a pear orchard (A) and trellis training system—upper (B) and lower (C) position, installed in different treatments.
Fig. 2. Damage severity levels in pear leaves (Pyrus pyrifolia nets. Nakai) according to the leaf’s damage area: (A) level 1, 1-20%; (B) level 2, 21-40%; (C) level 3, 41-60%; (D) level 4, 61-80%; and (E) level 5, >81% of the leaf’s sectional area.
Fig. 3. Large black chafer beetle (Holotrichia parallela) caught by nets.
Fig. 4. Seasonal fluctuation in adult Holotrichia parallela numbers captured in nets and using clove oil in Hampyeong (A) and Boseong (B). Vertical bars indicate ± standard errors (n = 3). Different lowercase letters above each bar indicate significantly different means, as determined by Duncan’s multiple range tests.
Fig. 5. Seasonal fluctuation in adult Holotrichia parallela numbers captured according to net trap treatment positions in Hampyeong (A) and Boseong (B). Vertical bars indicate ± standard errors (n = 3). Different lowercase letters above each bar indicate significantly different means, as determined by Duncan’s multiple range tests.
Fig. 6. Leaf damage (rate of damage) observed under different treatments in two organic pear orchards. (A) Hampyeong, (B) Boseong. Different lowercase letters above each bar indicate significantly different means as determined by Duncan’s multiple range tests.
참고문헌
- Cherry, R.H., Coale, F.J., Porter, P.S., 1990. Oviposition and survivorship of sugarcane grubs (Coleoptera: Scarabaeidae) at different soil moistures. J. Econ. Entomol. 83, 1355-1359. https://doi.org/10.1093/jee/83.4.1355
- Choi, M.Y., Paik, C.H., Seo, H.Y., Lee, G.H., Kim, J.D., Riotberg, B.D., Gries, G., 2006. Attractiveness of sex pheromone of the large black chaefer, Holotrichia parallela (Motschulasky) (Coleoptera: Scarabaeidae), in potato field. Korean J. Appl. Entomol. 45, 169-172.
- Geng, L.L., Shao, G.X., Raymond, B., Wang, M.L., Sun, X.X., Shu, C.L., Zhang, J., 2018. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. Microbiol. Res. 211, 13-20. https://doi.org/10.1016/j.micres.2018.02.008
- Ju, Q., Li, X., Guo, X.Q., Du, L., Shi, C.R., Qu, M.J., 2018. Two odorant-binding proteins of the dark black chafer (Holotrichia parallela) display preferential binding to biologically active host plant volatiles. Front. Physiol. 9, 769. https://doi.org/10.3389/fphys.2018.00769
- Ju, Q., Qu, M.J., Wang, Y., Jiang, X.J., Li, X., Dong, S.L., Han, Z.J., 2012. Molecular and biochemical characterization of two odorant-binding proteins from dark black chafer, Holotrichia parallela. Genome 55, 537-546. https://doi.org/10.1139/g2012-042
- Kim, K.W., 1990. Flight activities of larger black chafer (Holotrichia morose Waterhouse) and Korean black chafer (H. diomphalia BaTes). Korean J. Appl. Entomol. 29, 222-229.
- Kim, K.W., Hyun, J.S., 1998. Seasonal changes in vertical distribution of larger black chafer (Holotrichia morose Waterhouse) and Korean black chafer (H. diomphalia Bates) in soil. Korean J. Appl. Entomol. 27, 194-199.
- Kim, K.W., Son, J.S., 1991. Oviposition activities of larger black chafer (Holotrichia morosa Waterhouse) and Korean black chafer (H. diomphalia Bates). Korean J. Appl. Entomol. 30, 265-270.
- Klose, F., Tantau, H.J., 2004. Test of insect screens measurement and evaluation of the air permeability and light transmission. Eur. J. Hortic. Sci. 69, 235-243.
- Leal, W.S., Sawada, M., Matsuyama, S., Kuwahara, Y., Hasegawa, M., 1993. Unusual periodicity of sex pheromone production in the large black chafer Holotrichia parallela. J. Chem. Ecol. 19, 1381-1391. https://doi.org/10.1007/BF00984883
- Lee, D.W., Lee, K.C., Park, C.G., Choo, H.Y., Kim, Y.S., 2002. Scarabs (Coleoptera: Scarabaeidae) in sweet persimmon orchard and effect on sweet persimmon. Korean J. Appl. Entomol. 41, 183-189.
- Licciardi, S., Assogba Komlan, F., Sidick, I., Chandre, F., Hougard, J.M., Martin, T., 2008. A temporary tunnel screen as an ecofriendly method for small-scale farmers to protect cabbage crops in Benin. Int. J. Trop Insect Sci. 27, 152-158. https://doi.org/10.1017/S1742758407883184
- Mann, R.S., Tiwari, S., Smoot, J.M., Rouseff, R.L., Stelinski, L.L., 2010. Repellency and toxicity of plant-based essential oils and their constituents against Diaphorina citri kuwayama (Hemiptera: Psyllidae). J. Appl. Entomol. 136, 87-96. https://doi.org/10.1111/j.1439-0418.2010.01592.x
- Martin. T., Assogba Komlan, F., Houndete, T., Hougard, J.M., Chandre, F., 2006. Efficacy of mosquito netting for sustainable small holders' cabbage production in Africa. J. Econ. Entomol. 99, 450-454. https://doi.org/10.1093/jee/99.2.450
- Regnault-Roger, C., Vincent, C., Arnasson, J.T., 2012. Essential oils in insect control: low-risk products in a high-stakes world. Ann. Rev. Entomol. 57, 405-424. https://doi.org/10.1146/annurev-ento-120710-100554
- Scott, I.M., Jensen, H., Scott, J.G., Isman, M.B., Arnason, J.T., Philogene, B.J., 2003. Botanical insecticides for controlling agricultural pests: piperamides and the Colorado Potato Beetle leptinotarsa decemlineata say (Coleoptera: Chrysomelidae), Arch. Insect Biochem. Physiol. 54, 212-225. https://doi.org/10.1002/arch.10118
- Simon, S., Assogba Komlan, F., Adjaito, L., Mensah, A., Coffic, H.K., Ngouajiod, M., Martina, T., 2014. Efficacy of insect nets for cabbage production and pest management depending on the net removal frequency and microclimate. Int. J. Pest Manage. 60, 208-216. https://doi.org/10.1080/09670874.2014.956844
- Song, J.H., Alim, M.A., Choi, E.D., Seo, H.J., 2018. Effect of sex pheromone trap and bio-insecticides against large black chafer (Holotrichia parallela) in organic pear orchards. Korean J. Org. Agric. 26, 245-257. https://doi.org/10.11625/KJOA.2018.26.2.245
- Tanny, J., Cohen, S., Teitel, M., 2003. Screenhouse microclimate and ventilation: an experimental study. Biosyst. Eng. 84, 331-341. https://doi.org/10.1016/S1537-5110(02)00288-X
- Tian, B.L., Liu, Q.Z., Liu, Z.L., Li, P., Wang, J.W., 2015. Insecticidal potential of clove essential oil and its constituents on Cacopsylla chinensis (Hemiptera: Psyllidae) in laboratory and field. J. Econ. Entomol. 108, 957-961. https://doi.org/10.1093/jee/tov075
- Vincent, C., Hallman, G., Panneton, B., Fleurat-Lessard, F., 2003. Management of agricultural insects with physical control methods. Annu. Rev. Entomol. 48, 261-281. https://doi.org/10.1146/annurev.ento.48.091801.112639
- Wei, X.T., Xu, X.D., Deloach, C.J., 1995. Biological control of white grubs (Coleoptera: Scarabaeidae) by larvae of promachus yesonicus (Diptera: Asilidae) in China. Biol. Control 5, 290-296. https://doi.org/10.1006/bcon.1995.1036
- Weintraub, P.G., Berlinger, M.J., 2004. Physical control in greenhouses and field crops, in: Horowitz, A.R., Ishaaya, I. (Eds.), Insect pest management, Springer-Verlag, Berlin, pp. 301-318.