Figure 1. The mean of TCT in the right eye of a Korean subjects. P=0.020
Figure 2. The mean of CCT in the right eye of a Korean subjects. P=0.001
Figure 3. The mean of MCT in the right eye of a Korean subjects. P=0.012
Figure 4. The mean of SCT in the right eye of a Korean subjects. P=0.047
Figure 5. The mean of LCT in the right eye of a Korean subjects. P=0.044
Figure 6 The mean of LCT in the left eye of a Korean subjects. P=0.035
Figure 7. The mean of ICT in theleft eye of a Korean subjects. P=0.012
Table.1. Test of normality of corneal topography
Table.2. Analysis of corneal topography before and after wear of color soft contact lenses in young Korean population
References
- Ucakhan OO, Ozkan M, Kanpolat A, 2006. Corneal thickness measurements in normal and keratoconic eyes: Pentacam comprehensive eye scanner versus noncontact specular microscopy and ultrasound pachymetry. J Cataract Refract Surg, 32(6):970-977. https://doi.org/10.1016/j.jcrs.2006.02.037
- Ponce CMP, Rocha KM, Smith SD, et al., 2009. Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes. J Cataract Refract Surg, 35(6):1055-1062. https://doi.org/10.1016/j.jcrs.2009.01.022
- Nam SM, Im CY, Lee HK, et al. Accuracy of RTVue optical coherence tomography, Pentacam, and ultrasonic pachymetry for the measurement of central corneal thickness. Ophthalmology. 2010;117(11):2096-2103 https://doi.org/10.1016/j.ophtha.2010.03.002
- Edmonds CR, Wung SF, Pemberton B, Surrett S. Comparison of anterior chamber depth of normal and keratoconus eyes using Scheimpflug photography. Eye Contact lens.2009; 35(3) : 120-122. https://doi.org/10.1097/ICL.0b013e31819cf5a6
- Jinabhia A, Radhakrishana H, O'Donnell C. Corneal changes after suspending contact lens wear in early pellucid marginal corneal degeneration and moderate keratoconus. Eye Contact Lens. 2011; 37(2) 99-105. https://doi.org/10.1097/ICL.0b013e31820592b1
- Kato N. Toda I, Kawakita T, Sakai C, Tsubota K. Topography-guided conductive keratoplasty : treatment for advanced keratoconus. Am J Ophthalmol. 2010. 150(4):481-489. https://doi.org/10.1016/j.ajo.2010.05.014
- Lam AK, Douthwaite WA. The corneal-thickness profile in Hong Kong Chinese. Cornea.1998; 17, 384-388. https://doi.org/10.1097/00003226-199807000-00008
- Aj DAC, Vincent A, Vives P, Blasco F, Mico M. Assessment of corneal morphological changes induced by the use of daily disposable contact lenses., 2015, Cont Lens Anterior Eye. 22(38):28-33.
- Marjanovic I, Kontic D, Hentova-sencanic P, Markovic V, Bozic M. Correlation between central corneal thickness and intraocular pressure in various age groups. Srp Arh Celok Lek. 2010; 138(5-6): 279-286. https://doi.org/10.2298/SARH1006279M
- Yebra Pimentel E, Giraldez MJ, Arias FL, Gonzalez J, Gonzalez JM, Parafita MA, Febrero M. Rigid gas permeable contact lens and corneal topography, Ophthal Physiol Opt. 2001,21(3),236-242. https://doi.org/10.1046/j.1475-1313.2001.00556.x
- A. Juan, LP. Antonio, A. Luis, MS. Rahhal, MS. Franciso. Anatomic study of the corneal thickness of young emmetropic subjects 2004; 23(7): 669-673. https://doi.org/10.1097/01.ico.0000126323.20767.89
- Bohnke M, Chavanne P, Gianotti R. Continuous non-contact corneal pachymetry with a high speed reflectometer. J. Refract Surg.1998; 14, 140-146. https://doi.org/10.3928/1081-597X-19980301-13
- Feng Y, Varikooty J, Simpson TL. Diurnal variation of corneal and corneal epithelial measured using optical coherence tomography. Cornea. 2001; 20, 480-483. https://doi.org/10.1097/00003226-200107000-00008
- Florian R, Anke S, Christine B, Carl E. Age-related changes in central and peripheral corneal thickness- Determination of normal values with the Orbscan II topography system. Cornea. 2007; 26(1), 1-5. https://doi.org/10.1097/01.ico.0000240095.95067.3f
- Cho P, Cheung SW. Repeatability of corneal thickness measurements made by a scanning slit topography system. Ophthalmic Physiol Opt. 2002; 22, 505-510. https://doi.org/10.1046/j.1475-1313.2002.00060.x
- Haque S, Simpson T, Jones L. Corneal and epithelial thickness in keratoconus : a comparison of ultrasonic pachymetry, ORBscan II, and optical coherence tomography. J Refract Surg. 2006; 22(5):486-493. https://doi.org/10.3928/1081-597X-20060501-11
- Al-Farhan HM, Al-Otaibi WM. Comparison of central corneal thickness measurements using ultrasound pachymetry, ultrasound biomicroscopy, and the Artemis-2 VHF scanner in normal eyes. Clin Ophthalmol. 2012; 6:1037-104. https://doi.org/10.2147/OPTH.S32955
- Williams R, Fink BA, King-Smith PE, Mitchell GL. Central corneal thickness measurements: using an ultrasonic instrument and 4 optical instruments. Cornea. 2011;30(11):1238-1243. https://doi.org/10.1097/ICO.0b013e3182152051
- Christensen A, Narvaez J, Zimmerman G. Comparison of central corneal thickness measurements by ultrasound pachymetry, konan noncontact optical pachymetry, and orbscan pachymetry. Cornea. 2008;27(8):862-865. https://doi.org/10.1097/ICO.0b013e31816ed532
- Florian R, Anke S, Christine B, Carl E. Age-related changes in central and peripheral corneal thickness- Determination of normal values with the Orbscan II topography system. Cornea. 2007; 26(1), 1-5. https://doi.org/10.1097/01.ico.0000240095.95067.3f
- Farrell RA, Hart RW. On the theory of spatial organization of micromolecules in connective tissue. Bull math Biophys 1969;31: 727-760. https://doi.org/10.1007/BF02477784