Fig. 1. XRD patterns of oyster shell and marine sediment collected from oyster shells before and after calcination (Ab: albite, Am: amphibole, C: calcite, Ch: chlorite, I:illite, K: kaolinite, Q: quartz, S: smectite).
Fig. 2. SEM images of calcined pure Taean oyster shell powder. (a) 3000×, (b) 15000×.
Fig. 3. SEM images of calcined Taean oyster shell powder containing sediment (a) 0.2 wt% (3000×), (b) 0.6 wt% (900×), (c) 1.4 wt% (3500×), (d) 2.4 wt% (2000×), (e) 4.0 wt% (3000×), (f) 4.0 wt% (1000×).
Fig. 4. SEM images of calcined Taean oyster shell powder containing NaCl (3000×) (a), (b) 0.1 wt%, (c) 0.3 wt%, (d), (e) 0.7 wt%, (f) 1.2 wt%, (g), (h) 2.0 wt%.
Table 1. Chemical composition of sediment used in this experiment (wt%)
Table 2. BET surface areas of Taean oyster shells containing sediment and NaCl salt (m2/g)
참고문헌
- Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H. and Watanabe, M. (2015) Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. J. Environ. Manage., v.150, p.103-110. https://doi.org/10.1016/j.jenvman.2014.10.032
- Araujo, H., da Silva, N.F., Acchar, W. and Gomes, U.U. (2004) Thermal decomposition of illite. Mater. Res., v.7, p.359-361. https://doi.org/10.1590/S1516-14392004000200024
- Brindley, G.W. and Ali, S.Z. (1950) X-ray study of thermal transformations in some mgnesium chlorite minerals. Acta. Chrystallogr., v.3, p.25-30. https://doi.org/10.1107/S0365110X50000069
- Cao X, Dermatas D, X.X. and Shen, G. (2008) Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments. Environ. Sci. Pollut. R., v.15, p.120-127. https://doi.org/10.1065/espr2007.05.416
-
Castilho, S., Kiennemann, A., Pereira, M.F.C. and Dias, A.P.S. (2013) Sorbent for
$CO_2$ capture from biogenesis calcium wastes. Chem. Eng. J., v.226, p.146-153. https://doi.org/10.1016/j.cej.2013.04.017 - Chen, J., Yao, H. and Zhang, L. (2012) A study on the calcination and sulphation behaviour of limestone during oxy-fuel combustion. Fuel, v.102, p.386-395. https://doi.org/10.1016/j.fuel.2012.05.056
- de Diego, L.F., de las Obras-Loscertales, M., Garcia-Labiano, F., Rufas, A., Abad, A., Gayan, P. and Adanez, J. (2011) Chracterization of a limestone in a batch fluidized bed reactor for sulfur retention under oxyfuel operating conditions. Int. J. Greenh. Gas. Con., v.5, p.1190-1198. https://doi.org/10.1016/j.ijggc.2011.05.032
- Garcia-Labiano, F., Rufas, A., de Diego, L.F., de las Obras-Loscertales, M., Gayan P., Abad, A. and Adanez, J. (2011) Calcium-based sorbents behaviour during sulphation at oxy-fuel fluidised bed combustion conditions. Fuel, v.90, p.3100-3108. https://doi.org/10.1016/j.fuel.2011.05.001
- Ha, S.H., Cha, M.K., Kim, K., Kim, S.H. and Kim, Y. (2017) Mineralogical and chemical characteristics of the oyster shells from Korea. J. Miner. Soc. Korea, v.30, p.149-159. https://doi.org/10.9727/jmsk.2017.30.4.149
- Hur, Y.B., Min, K.S., Kim, T.E., Lee, S.J. and Hur, S.B. (2008) Larvae growth and biochemical composition change of the Pacific oyster, Crassostrea gigas, larvae during artificial seed production. J. Aquaculture, v.21, p.203-212.
- Kouzu, M., Kajita, A. and Fujimori, A. (2016) Catalytic activity of calcined scallop shell for rapeseed oil transesterification to produce biodiesel. Fuel, v.182, p.220-226. https://doi.org/10.1016/j.fuel.2016.05.111
- Lim, H.J., Back, S.H., Lim, M.S., Choi, E.H. and Kim, S.K. (2012) Regional variations in Pacific oyster, Crassostrea gigas, growth and the number of larvae occurrence and spat settlement along the west coast, Korea. Korean J. Malacol., 28, 259-267. https://doi.org/10.9710/kjm.2012.28.3.259
-
Laursen, K., Grace, J.R., and Lim, C.J. (2001) Enhancement of the sulfur capture capacity of limestones by the addition of
$Na_2CO_3$ and NaCl. Environ. Sci. Technol., v.35, p.4384-4389. https://doi.org/10.1021/es0108279 - Lee, J.W., Choi, S.H., Kim, S.H., Cha, W.S., Kim, K. and Moon, B.K. (2018) Mineralogical changes of oyster shells by calcination: A comparative study with limestone. Econ. Environ. Geol., v.51, p.485-492. https://doi.org/10.9719/EEG.2018.51.6.485
-
Ma, K.W. and Teng, H. (2009) CaO powders from oyster shells for efficient
$CO_2$ capture in multiple carbonation cycles. J. Am. Ceram. Soc., v.93, p.221-227. https://doi.org/10.1111/j.1551-2916.2009.03379.x - Malek, Z., Balek, V., Garfinkel-Shweky, D. and Yariv, S. (1997) The study of the dehydration and dehydroxylation of smectites by emanation thermal analysis. J. Therm. Analysis, v.48, p.83-92. https://doi.org/10.1007/BF01978968
- Moon, D.H., Kim, K.W., Yoon, I.H., Grubb, D.G., Shin, D.Y., Cheong, K.H., Choi, H.I., Ok, Y.S. and Park, J.H. (2011) Stabilization of arsenic-contaminated mine tailings using natural and calcined oyster shells. Environ. Earth Sci., v.64, p.597-605. https://doi.org/10.1007/s12665-010-0890-y
- Mymrin, V.A., Alekseev, K.P., Catai, R.E., Izzo, R.L.S., Rose, J.L., Nagalli, A. and Romano, C.A. (2015) Construction material from construction and demolition debris and lime production wastes. Const. Build. Mater., v.79, p.207-213. https://doi.org/10.1016/j.conbuildmat.2015.01.054
- Ok, Y.S., Oh, S.E., Ahmad, M., Hyun, S., Kim, K.R., Moon, D.H., Lee, S.S., Lim, K.J., Jeon, W.T. and Yang, J.E. (2010) Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ. Earth Sci., v.61, p.1301-1308. https://doi.org/10.1007/s12665-010-0674-4
- Salvador, C., Lu, D., Anthony, E.J. and Abanades, J.C. (2003) Enhancement of CaO for CO2 capture in an FBC environment. Chem. Eng. J., v.96, p.197-195. https://doi.org/10.1016/j.cej.2003.08.018
- Scala, F., Chirone, R., Meoni, P., Carcangju, G., Manca, M., Mulas, G. and Mulas, A. (2013) Fluidized bed desulfurization using lime obtained after slow calcination of limestone particles. Fuel, v.114, p99-105. https://doi.org/10.1016/j.fuel.2012.11.072
- Shearer, J.A., Johnson, I. and Turner, C.B. (1979) Effects of sodium chloride on limestone calcunation and sulfation in fluidized-bed combustion. Environ. Sci. Techn., v.13, p.1113-1118. https://doi.org/10.1021/es60157a008
- Seki, Y. and Kenedy, G.C. (1964) The breakdown of potassium feldspar, KAlSi3O8 at high temperatures and high pressures. Am. Mineral., v.49, p.1688-1706.
-
Stanmore, B.R. and Gilot, P. (2005) Review-calcination and carbonation of limestone during thermal cycling for
$CO_2$ sequestration. Fuel. Process Technol., v.86, p.1707-1743. https://doi.org/10.1016/j.fuproc.2005.01.023 - Roy, R., Roy, D.M. and Francis, E.E. (1955) New data on thermal dexomposition of kaolinite and halloysite. J. Am. Ceram. Soc., v.38, p.198-205. https://doi.org/10.1111/j.1151-2916.1955.tb14929.x
- Wang, H., Li, C., Peng, Z. and Zhang, S. (2011) Characterization and thermal behavior of kaolin. J. Them. Anal. Calorim., v.105, p.157-160. https://doi.org/10.1007/s10973-011-1385-0
- Yen, H.Y. and Li, J.Y. (2015) Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method. J. Environ. Manage., v.161, p.344-349. https://doi.org/10.1016/j.jenvman.2015.07.024
- Yeskis, D., van Groos, A.F.K. and Guggenheim, S. (1985) The dhydroxylation of kaolinite. Am. Mineral., v.70, p.159-164.