DOI QR코드

DOI QR Code

Preliminary Study on the Phase Transition of White Precipitates Found in the Acid Mine Drainage

산성광산배수에서 발견되는 흰색침전물의 상전이에 대한 예비 연구

  • Yeo, Jin Woo (School of Earth System Sciences, Kyungpook National University) ;
  • Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University)
  • 여진우 (경북대학교 지구시스템과학부) ;
  • 김영규 (경북대학교 지구시스템과학부)
  • Received : 2019.03.11
  • Accepted : 2019.04.12
  • Published : 2019.06.30

Abstract

The white aluminum phases in acid mine drainage usually precipitates when mixed with stream waters with relatively high pH. The minerals in white precipitates play important roles in controlling the behavior of heavy metals by adsorbing and coprecipitation. By the phase transition of these minerals in white precipitates, dissolution and readsorption of heavy metals may occur. This study was conducted to obtain preliminary information on the phase transition of the mineral phases in white precipitates. In this study, the mineral phase changes in the white precipitates collected from the stream around Dogye Mining Site over time were investigated with different pH values and temperatures. White precipitates consist mainly of basaluminite, amorphous $Al(OH)_3$ and a small amount of $Al_{13}$-tridecamer. During aging, the incongruent dissolution of the basaluminite occurs first, increasing the content of the amorphous $Al(OH)_3$. After that, pseudoboehmite is finally precipitated following the precursor phase of pseudoboehmite. At $80^{\circ}C$, this series of processes was clearly observed, but at relatively low temperatures, no noticeable changes were observed from the initial condition with coexisting basaluminite and amorphous $Al(OH)_3$. At high pH, the desorption of $SO{_4}^{2-}$ group in basaluminite was initiated to promote phase transition to the pseudoboehmite precursor. Over time, the solution pH decreases due to the dissolution and phase transition of the minerals, and even after the precipitation of pseudoboehmite, only the particle size slightly increased but no clear cystal form was observed.

산성광산배수에서 흰색 알루미늄 침전물은 pH가 상대적으로 높은 하천수와 만나 섞일 때 주로 발생한다. 이 침전물을 구성하는 광물은 산성광산배수 내 중금속 등을 흡착 공침하여 이들 중금속의 거동을 조절하는 중요한 역할을 한다. 이러한 흰색 침전물을 구성하고 있는 광물들은 추후 상변화를 거치며 그러한 과정 중에 중금속의 용해 재흡착 등이 일어날 수 있다. 본 연구는 이러한 흰색 침전물의 상전이 과정에 대한 기본적인 정보를 얻기 위하여 수행되었다. 본 연구에서는 도계광업소 주변의 하천에서 채취한 흰색 침전물을 대상으로 서로 다른 pH와 온도의 조건에서 시간이 지남에 따라 일어나는 광물상의 변화를 살펴보았다. 흰색 침전물은 주로 basaluminite와 비정질 $Al(OH)_3$ 및 미량의 $Al_{13}$-tridecamer의 혼합물로 구성되며, basaluminite의 부조화용해가 먼저 일어나 비정질 $Al(OH)_3$의 함량이 증가한 이후, pseudoboehmite의 전구물질 단계를 거쳐서 pseudoboehmite가 최종 침전되는 상전이 과정을 거친다. $80^{\circ}C$의 온도에서는 이러한 일련의 과정이 잘 나타났지만, 비교적 낮은 온도에서는 basaluminite와 비정질 $Al(OH)_3$가 공존하는 초기 침전물 상태로 남아있었다. 그리고 높은 pH는 basaluminite의 $SO{_4}^{2-}$기의 탈착을 유도하여 pseudoboehmite 전구물질로의 상전이를 촉진하였다. 시간이 지남에 따라 광물의 용해 및 상전이에 의하여 용액의 pH는 낮아지는 경향을 보였으며, 최종산물인 pseudoboehmite가 형성되어도 약간의 입자의 크기 증가만 관찰되고 완전한 결정질의 형태는 보이지 않았다.

Keywords

References

  1. Acero, P. and Hudson-Edwards, K.A. (2018) Influence of pH and temperature on basaluminite dissolution rates. ACS Earth and Space Chemistry, 2, 203-209. https://doi.org/10.1021/acsearthspacechem.7b00128
  2. Adams, F. and Hajek, B.F. (1978) Effects of solution sulfate, hydroxide, and potassium concentrations on the crystallization of alunite, basaluminite, and gibbsite from dilute aluminum solutions. Soil Science, 126, 169-173. https://doi.org/10.1097/00010694-197809000-00006
  3. Adams, F. and Rawajfih, Z. (1977) Basaluminite and alunite: A possible cause of sulfate retention by acid soils. Soil Science Society of America Journal, 41, 686-692. https://doi.org/10.2136/sssaj1977.03615995004100040013x
  4. Bigham, J.M. and Nordstrom, D.K. (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. Reviews in mineralogy and geochemistry, 40, 351-403. https://doi.org/10.2138/rmg.2000.40.7
  5. Carrero, S., Fernandez-Martinez, A., Perez-Lopez, R., Lee, D., Aquilanti, G., Poulain, A., Lozano, A., and Nieto, J.M. (2017) The nanocrystalline structure of basaluminite, an aluminum hydroxide sulfate from acid mine drainage. American Mineralogist, 102, 2381-2389. https://doi.org/10.2138/am-2017-6059
  6. Davidson, L.E., Shaw, S., and Benning, L.G. (2008) The kinetics and mechanisms of schwertmannite transformation to goethite and hematite under alkaline conditions. American Mineralogist, 93, 1326-1337. https://doi.org/10.2138/am.2008.2761
  7. Furrer, G., Phillips, B.L., Ulrich, K.U., Pöthig, R., and Casey, W.H. (2002). The origin of aluminum flocs in polluted streams. Science, 297, 2245-2247. https://doi.org/10.1126/science.1076505
  8. Hollingworth, S.E. and Bannister, F.A., (1950) Basaluminite and hydrobasaluminite, two new minerals from Northamptonshire. Mineralogical Magazine, 29, 1-17. https://doi.org/10.1180/minmag.1950.029.208.03
  9. Jones, A.M., Collins, R.N., and Waite, T.D. (2011) Mineral species control of aluminum solubility in sulfate-rich acidic waters. Geochimica et Cosmochimica Acta, 75, 965-977. https://doi.org/10.1016/j.gca.2010.12.001
  10. Kim, J.J. and Kim, S.J. (2003) Environmental, mineralogical, and genetic characterization of ochreous and white precipitates from acid mine drainages in Taebaeg, Korea. Environmental Science & Technology, 37, 2120-2126. https://doi.org/10.1021/es026353a
  11. Kim, Y. (2015) Mineral phases and mobility of trace metals in white aluminum precipitates found in acid mine drainage. Chemosphere, 119, 803-811. https://doi.org/10.1016/j.chemosphere.2014.08.034
  12. Lee, G., Bigham, J.M., and Faure, G. (2002) Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Applied Geochemistry, 17, 569-581. https://doi.org/10.1016/S0883-2927(01)00125-1
  13. Lozano, A., Fernandez-Martínez, A., Ayora, C., and Poulain, A. (2018) Local structure and ageing of basaluminite at different pH values and sulphate concentrations. Chemical Geology, 496, 25-33. https://doi.org/10.1016/j.chemgeo.2018.08.002
  14. Nordstrom, D.K. (1982) The effect of sulfate on aluminum concentrations in natural waters: Some stability relations in the system $Al_2O_3-SO_3-H_2O$ at 298 K. Geochimica et Cosmochimica Acta, 46, 681-692. https://doi.org/10.1016/0016-7037(82)90168-5
  15. Nordstrom, D.K., Ball, J.W., Roberson, C.E., and Hanshaw, B.B. (1984) The effect of sulfate on aluminum concentrations in natural waters: II. Field occurrences and identification of aluminum hydroxysulfate precipitates. Geological Society of America Program Abstract, 16, 611.
  16. Pu, X., Vazquez, O., Monnell, J.D., and Neufeld, R.D. (2010) Speciation of aluminum precipitates from acid rock discharges in Central Pennsylvania. Environmental Engineering Science, 27, 169-180. https://doi.org/10.1089/ees.2009.0196
  17. Roberson, C.E. and Hem, J.D. (1969) Solubility of aluminum in the presence of hydroxide, fluoride, and sulfate. USGPO.
  18. Sanchez-Espana, J., Yusta, I., and Diez-Ercilla, M. (2011) Schwertmannite and hydrobasaluminite: A re-evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes. Applied Geochemistry, 26, 1752-1774. https://doi.org/10.1016/j.apgeochem.2011.06.020
  19. Yu, J.Y. (1996a) Pollution of Osheepcheon Creek by abandoned coal mine drainage in Dogyae area, eastern part of Samcheok coal field, Kangwon-Do, Korea. Environmental Geology, 27, 286-299. https://doi.org/10.1007/BF00766698
  20. Yu, J.Y. (1996b) Precipitation of Fe and Al compounds from the acid mine waters in the Dogyae area, Korea: A qualitative measure of equilibrium modeling applicability and neutralization capacity? Aquatic Geochemistry, 2, 81-105. https://doi.org/10.1007/BF00240854