DOI QR코드

DOI QR Code

국내 액상화 평가를 위한 진동전단응력비 산정

Evaluation Methods of Cyclic Shear Stress Ratio for the Assessment of Liquefaction in Korea

  • 유병수 (서울대학교 건설환경공학부) ;
  • 봉태호 (서울대학교 건설환경종합연구소) ;
  • 김성렬 (서울대학교 건설환경공학부)
  • Yoo, Byeong-Soo (Dept. of Civil & Environmental Eng., Seoul National Univ.) ;
  • Bong, Tae-Ho (Institute of Construction & Environmental Eng., Seoul National Univ.) ;
  • Kim, Sung-Ryul (Dept. of Civil & Environmental Eng., Seoul National Univ.)
  • 투고 : 2019.03.27
  • 심사 : 2019.05.08
  • 발행 : 2019.06.30

초록

액상화 평가를 수행할 때 진동전단응력비(CSR)는 일반적으로 지반응답해석 또는 Seed & Idriss의 간편법을 수정한 방법을 통해 산정하고 있다. 본 연구에서는 진동전단응력비 산정방법의 적용성을 분석하기 위하여 1차원 등가선형 지반응답해석을 수행한 후 미연방도로국(FHWA), 일본도로협회(JRA), 국내설계기준(KDS) 등에서 제안한 방법을 적용하여 진동전단응력비를 산정하였다. 연구결과, 국내설계기준(KDS)으로 산정한 진동전단응력비가 해석 결과와 가장 큰 오차를 나타내었다. 그 이유는 국내설계기준의 경우 깊이에 따른 응력감소계수를 최대진동전단응력의 비가 아닌 최대지반가속도의 비로 정의하는 오류가 있기 때문이다.

Usually, the cyclic shear stress ratio (CSR) for the assessment of liquefaction has been determined by performing ground response analysis or adopting simplified method suggested by Seed & Idriss with some modifications. In order to analyze the applicability of the CSR evaluation methods, the present study performed one-dimensional equivalent linear analysis and evaluated CSR based on design codes from FHWA, JRA, and KDS. The comparison of the CSR obtained from each code showed that the CSR from KDS showed the largest error with the analysis results. The reason is because KDS has an error, which defines the stress reduction coefficient applying the maximum acceleration at each depth, not the maximum cyclic shear stress mobilized in the soil.

키워드

GJBGC4_2019_v35n6_5_f0001.png 이미지

Fig. 1. Analysis flow of one-dimensional equivalent linear ground response analysis

GJBGC4_2019_v35n6_5_f0002.png 이미지

Fig. 2. Evaluation of the maximum shear stress below a rigid soil mass

GJBGC4_2019_v35n6_5_f0003.png 이미지

Fig. 3. Ranges and average curve of stress reduction coefficient (Seed and Idriss, 1971)

GJBGC4_2019_v35n6_5_f0004.png 이미지

Fig. 4. SPT N value and Vs profiles at the study site

GJBGC4_2019_v35n6_5_f0005.png 이미지

Fig. 5. Normalized shear modulus and damping ratio curves adopted in the study

GJBGC4_2019_v35n6_5_f0006.png 이미지

Fig. 6. Response spectrum of input motions modified to match Korean Design Standard

GJBGC4_2019_v35n6_5_f0007.png 이미지

Fig. 7. Acceleration-time history of input motions

GJBGC4_2019_v35n6_5_f0008.png 이미지

Fig. 8. Comparison of stress reduction coefficients obtained from the present study

GJBGC4_2019_v35n6_5_f0009.png 이미지

Fig. 9. Comparison of CSR from each method

GJBGC4_2019_v35n6_5_f0010.png 이미지

Fig. 10. Conditions for calculating maximum shear stress

GJBGC4_2019_v35n6_5_f0011.png 이미지

Fig. 11. Comparison of the ratio of stress reduction coefficient

Table 1. summary of maximum and mean percent error for CSR

GJBGC4_2019_v35n6_5_t0001.png 이미지

참고문헌

  1. Cetin, K. O. and Seed, R. B. (2004), "Nonlinear Shear Mass Participation Factor (rd) for Cyclic Shear Stress Ratio Evaluation", Soil Dynamics and Earthquake Engineering, Vol.24, No.2, pp.103-113. https://doi.org/10.1016/j.soildyn.2003.10.008
  2. Dobry, R., Ladd, R. S., Yokel, F. Y., Chung, R. M., and Powell, D. (1982), Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method (Vol. 138). Gaithersburg, MD: National Bureau of Standards.
  3. Marsh, M. L., Buckle, I. G., and Kavazanjian, E. (2014), LRFD seismic analysis and design of bridges (reference manual). FHWA NHI-15-004.
  4. Farrokhzad, F. and Janalizadeh, A. (2017), "Depth Reduction Factor Assessment for Evaluation of Cyclic Stress Ratio Based on Site Response Analysis", Soil Mechanics and Foundation Engineering, Vol.54, No.4, pp.244-252. https://doi.org/10.1007/s11204-017-9465-1
  5. Golesorkhi, R. (1989), Factors influencing the computational determination of earthquake-induced shear stresses in sandy soils, University of California, Berkeley.
  6. Ishihara, K. (1977), "Simple Method of Analysis for Liquefaction of Sand Deposits During Earthquakes", Soils and Foundations, Vol.17, No.3, pp.1-17. https://doi.org/10.3208/sandf1972.17.3_1
  7. Ishihara, K. (1985), "Stability of Natural Deposits during Earthquakes", Proc. of 11th ICSMFE, 1985, 1, pp.321-376.
  8. Imai, T., Tonouchi, K., and Kanemori, T. (1981), The simple evaluation method of shear stress generated by earthquakes in soil ground, Rep, 3, pp.39-58.
  9. Iwasaki, T., Arakawa, T., and Tokida, K. I. (1984), "Simplified Procedures for Assessing Soil Liquefaction during Earthquakes", International Journal of Soil Dynamics and Earthquake Engineering, Vol.3, No.1, pp.49-58. https://doi.org/10.1016/0261-7277(84)90027-5
  10. Iwasaki, T. (1986), "Soil Liquefaction Studies in Japan: State-of-the-art", Soil Dynamics and Earthquake Engineering, Vol.5, No.1, pp.2-68. https://doi.org/10.1016/0267-7261(86)90024-2
  11. JRA (2012), 5 Seismic Design Guide specifications for highway bridges, the commentary, Japan road association, Japan.
  12. MLIT (2018), general Seismic design (KDS 17 10 00), Ministry of Land, Infrastructure and Transport, Korea.
  13. MOF (2018), Harbour and Fishery design criteria.design code (KDS 64 17 00), Ministry of Oceans and Fisheries, Korea.
  14. Kim, S. I., Park, I. J., and Choi, J. S. (2000), "A Study on the Assesment of Liquefaction Potential in Korea", Journal of The Korean Society of Civil Engineers, Vol.20, No.2C, pp.129-129.
  15. Kramer, S. L. (1996), Geotechnical Earthquake Engineering, Prentice Hall, New Jersey, USA.
  16. Kishida, T., Boulanger, R. W., Abrahamson, N. A., Driller, M. W., and Wehling, T. M. (2009), Seismic response of levees in the Sacramento-San Joaquin Delta, Earthquake spectra, Vol.25, No.3, pp.557-582. https://doi.org/10.1193/1.3157259
  17. Maurer, B. W., Green, R. A., Cubrinovski, M., and Bradley, B. A. (2014), "Evaluation of the Liquefaction Potential Index for Assessing Liquefaction Hazard in Christchurch, New Zealand", Journal of Geotechnical and Geoenvironmental Engineering, Vol.140, No.7, 04014032. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001117
  18. Nemat-Nasser, S. and Shokooh, A. (1979), "A Unified Approach to Densification and Liquefaction of Cohesionless Sand in Cyclic Shearing", Canadian Geotechnical Journal, Vol.16, No.4, pp.659-678. https://doi.org/10.1139/t79-076
  19. ProShake User's Manual (1996), Ground Response Analysis Program, Version 2.0. EduPro Civil systems, Inc. Sammamish, Washington.
  20. Russell, J. and van Ballegooy, S. (2015), Canterbury Earthquake Sequence: Increased Liquefaction Vulnerability Assessment Methodology, Tonkin & Taylor Ltd, New Zealand.
  21. Rashidian, V. and Gillins, D. T. (2018), Modification of the liquefaction potential index to consider the topography in Christchurch, New Zealand. Engineering Geology, 232, pp.68-81. https://doi.org/10.1016/j.enggeo.2017.11.010
  22. Seed, H. B. and Idriss, I. M. (1970), Soil moduli and damping factors for dynamic response analysis, Rep. No. EERC 70-10. Earthquake Engineering Research Centre, Berkeley, CA.
  23. Seed, H. B. and Idriss, I. M. (1971), Simplified procedure for evaluating soil liquefaction potential, Journal of Soil Mechanics & Foundations Div.
  24. T&T (2013), Liquefaction vulnerability study, Tonkin & Taylor Ltd, New Zealand.
  25. Vucetic, M. and Dobry, R. (1991), "Effect of Soil Plasticity on Cyclic Response", Journal of geotechnical engineering, Vol.117, No.1, pp.89-107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
  26. Youd, T. L. and Idriss, I. M. (2001), "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", Journal of geotechnical and geoenvironmental engineering, Vol.127, No.4, pp.297-313. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297)
  27. Yoshida, N. (2015), Seismic Ground Response Analysis, Springer, Berlin, Germany.
  28. Zhang, G., Robertson, P. K., and Brachman, R. W. (2002), "Estimating Liquefaction-induced Ground Settlements from CPT for Level Ground", Canadian Geotechnical Journal, Vol.39, No.5, pp.1168-1180. https://doi.org/10.1139/t02-047