
599

Journal of The Korea Institute of Information Security & Cryptology
VOL.29, NO.3, Jun. 2019

ISSN 1598-3986(Print)
ISSN 2288-2715(Online)

https://doi.org/10.13089/JKIISC.2019.29.3.599

STRIDE HARM 기반 클라우드 네트워크 취약

탐지 기법*

조 정 석,1† 곽 진2‡

1
아주 학교 컴퓨터공학과 정보보호응용 보증연구실,

2
아주 학교 사이버보안학과

STRIDE and HARM Based Cloud Network Vulnerability Detection

Scheme*

Jeong-Seok Jo,1† Jin Kwak2‡

1ISAA Lab., Department of Computer Engineering, Ajou University,
2
Department of Cyber Security, Ajou University

요 약

클라우드 네트워크는 다양한 서비스 제공을 해 활용된다. 클라우드 네트워크를 활용한 서비스 제공이 확 되면

서, 다양한 환경과 로토콜을 활용하는 자원들이 클라우드에 다수 존재하게 되었다. 하지만 이러한 자원들에 한 보

안 침입이 발생하고 있으며, 클라우드 자원에 한 들이 등장함에 따라 클라우드 네트워크 취약 탐지에 한

연구가 요구된다. 본 논문에서는 다양한 환경과 로토콜을 활용하는 자원들에 한 취약 탐지를 해 STRIDE와

HARM을 활용한 취약 탐지 기법을 제시하고 취약 탐지 시나리오 구성을 통해 클라우드 네트워크 취약 탐지

기법에 해 제안한다.

ABSTRACT

Cloud networks are used to provide various services. As services are increasingly deployed using cloud networks, there

are a number of resources in the cloud that leverage a variety of environments and protocols. However, there is a security

intrusion on these resources, and research on cloud network vulnerability detection is required as threats to cloud resources

emerge. In this paper, we propose a vulnerability detection scheme using STRIDE and HARM for vulnerability detection of

resources utilizing various environments and protocols, and present cloud network vulnerability detection scheme through

vulnerability detection scenario composition.

Keywords: Cloud, Vulnerability Detection, STRIDE, HARM

I. Introduction*

As cloud services emerge, interest in

security for cloud environments is

increasing rapidly. According to

Received(05. 28. 2019), Modified(06. 07. 2019),

Accepted(06. 07. 2019)

* This research was sponsored by the

Department of the Nave, Office of Naval

Symantec’s “2019†Internet Security Threat

Report,” more than 70 million data leaks

have occurred in 2018. This implies that

security vulnerabilities in cloud

environments are continuing to increase [1].

Research(ONR)(N62909-17-1-2159)

†주 자, zzi0083@ajou.ac.kr

‡교신 자, security@ajou.ac.kr(Corresponding author)

600 STRIDE HARM 기반 클라우드 네트워크 취약 탐지 기법

2018 2019 2020 2021 2022

BPaas 45.8 49.3 53.1 57.0 61.1

Pass 15.6 19.0 23.0 27.5 31.8

Saas 80.0 94.8 110.5 126.7 143.7

Iaas 30.5 38.9 49.1 61.9 76.6

Security 10.5 12.2 14.1 16.0 17.9

Total

Market
182.4 214.3 249.8 289.1 331.2

Table 1. Gartner Cloud Service Forecast

Meanwhile, Gartner reported positive

expectations for the growth of the cloud

service market. Table 1. shows the scale

of the market growth expected by Gartner.

Gartner predicted that the cloud market

size will be 331.2 billion dollars in 2022,

i.e., 1.81 times that of the cloud market in

2018. Additionally, the size of the cloud

security market is expected to be 17.9

billion dollars, i.e., 1.65 times its size in 2018 [2].

Hence, cloud services are expected to

expand steadily despite the high

possibility of various security

vulnerabilities. As cloud services expand

steadily, the forms and compositions of

cloud environments are becoming more

diverse. As these forms become more

diverse, components with various

environments and features are appearing.

Hence, cloud networks are capable of

providing various services using various

components; however, owing to the

tradeoff between providing services and

security, a variety of security threats are

expected to occur in cloud environments.

As components become more diverse,

vulnerabilities in cloud networks are

changing to more complex and diverse

forms owing to the variety of component

vulnerabilities. Therefore, it is necessary to

be able to distinguish and detect the

vulnerabilities of various components in

cloud networks.

A cloud network vulnerability detection

method using STRIDE and HARM is

proposed herein for the security of cloud

networks that is expanding owing to

various components. The vulnerability

detection scheme presented herein was

used on CVE vulnerability, and the

vulnerabilities of each cloud network

component were distinguished based on

the STRIDE threat classification scheme to

distinguish and classify vulnerabilities. In

addition, HARM was used to visualize the

exploits, hosts, and vulnerabilities [3][4].

In the vulnerability detection scheme

presented herein, it is possible to use CVE

to perform a detailed analysis of which

actual environments can experience certain

vulnerabilities. Furthermore, it is possible

to distinguish vulnerabilities in a cloud

environment where a variety of

components exist through vulnerability

classification that uses STRIDE. Using

HARM, attack graphs for each component

and vulnerability can be computed.

Section 2 discusses the definitions and

usage methods of CVE, STRIDE, and

HARM. Section 3 describes the operating

process of the proposed cloud network

vulnerability detection scheme based on

STRIDE and HARM. Section 4 provides a

scenario-based analysis of the proposed

scheme’s features and performance. Section

5 presents the conclusions.

II. Related Work

2.1 CVE Vulnerability

CVE represents “Common Vulnerabilities

and Exposures”[5] and it is a service

providing definitions for publicly released

cybersecurity vulnerabilities. The goal of

CVE is to allow data to be shared easily

using these definitions. CVE items include

정보보호학회논문지 (2019. 6) 601

Fig. 1. CVE-2019-7304 Exploit code

identification numbers, descriptions, and

references [6].

The CVE ID format consists of ”CVE

prefix + year + sequence number digits,”

and IDs are assigned in a format such as

“CVE-2014-99999.” These CVE IDs are used

to perform CVE searches. Furthermore,

CVE IDs are primarily used for threat

identification that is performed in various

security products and services [6].

Therefore, a vulnerability detection

method is proposed herein that is used on

CVE vulnerabilities that can occur in a

cloud network where a variety of

components and services exist.

The method is targeted at components

that can exist in a cloud network virtual

environment (Linux Kernel, Wordpress,

Ubuntu, etc.). In this study, collected

CVE vulnerabilities occur easily because

the actual exploit codes exist and can be

used. The collected CVE vulnerability

examples are shown in Table 2.

The features of the vulnerabilities

shown in Table 2. are as follows.

CVE Vulnerability

CVE-2019-7304

CVE-2017-10661

CVE-2019-6111

CVE-2019-5418

CVE-2018-6389

CVE-2017-16995

Table 2. CVE List

CVE-2019-7304

This is a vulnerability that can occur in

standard snapd up to version 2.37.1. In

this vulnerability, an attacker can

execute a given command as a root

owing to the improper implementation

of the socket owner validation [7]. Part

of the exploit code for executing the

vulnerability is shown below [8].

CVE-2017-10661

This is a vulnerability in which

operations can be performed on the file

descriptor to obtain privileges using the

might_cancel queue that is a race

condition of fs /timerfd.c in the Linux

kernel up to Version 4.10.15 [7]. Part of

the exploit code for executing the

vulnerability is shown below [9].

Fig. 2. CVE-2017-10661 Exploit code

CVE-2019-6111

This is a vulnerability that can occur in

Ubuntu 14.04/16.04/18.04. An attacker

can use an scp to verify the

vulnerability to overwrite a given file in

the scp client’s target directory [7].

Part of the exploit code for executing

the vulnerability is shown below [10].

602 STRIDE HARM 기반 클라우드 네트워크 취약 탐지 기법

Fig. 3. CVE-2019-6111 Exploit code

CVE-2019-5418

This is a vulnerability that can occur in

Debian Linux 8.0. An accept header

created by an attack can be used to

leak the content of a given file [7].

Part of the exploit code for executing

the vulnerability is shown below [11].

Fig. 4. CVE-2019-5418 Exploit code

CVE-2018-6389

This is a vulnerability that can occur in

Wordpress 4.9.2. A list of js files

registered by an attacker can be used

to create the DoS (resource

consumption) [7]. Part of the exploit

code for executing the vulnerability is

shown below [12].

Fig. 5. CVE-2018-6389 Exploit code

CVE-2017-16995

This is a vulnerability that can occur in

the Linux kernel Version 4.14.8. An

attacker can use the check_alu_op

function of kernel/bpf/verifier.c to

obtain root permission [7]. Part of the

exploit code for executing the

vulnerability is shown below[13].

Fig. 6. CVE-2017-16995 Exploit code

2.2 STRIDE

STRIDE is a classification system

developed by Microsoft for threat

classification [14].

It consists of S(Spoofing), T(Tampering),

R(Repudiation), I(Information disclosure),

D(Denial of service), and E(Elevation of

privilege). Listed below are the

descriptions of each element.

정보보호학회논문지 (2019. 6) 603

S(Spoofing)

This is a well-known threat to

wired/wireless networks in which the

attacker can access a network and its

resources[15]. In addition, the attacker

can use the masquerading IP address

or MAC address of each host on the

network, and these attacks are known

as IP spoofing and MAC spoofing,

respectively [16].

T(Tampering)

The attacker extracts a user’s resources

and modifies the resources [17]. In

various environments, many attacks

can be occurred such as tampering with

firmware[18].

R(Repudiation)

The attacker claims to not have

performed or not responsible for an

action [19]

I(Information Disclosure)

The attacker accesses resources for

which they do not have permission and

leaks the resources’ information [19].

D(DoS)

The attacker consumes a large amount

of the victim’s processing power,

memory, disk space, or network

bandwidth such that legitimate users

cannot use a service [20]. Examples of

DoS attacks afre: UDP attack, HTTP

attack, SYN flood, etc[21].

E(Elevation of Privilege)

The attackers enable tasks that are

otherwise impossible by increasing their

permissions[19]. Highest privilege

configuration results in a insecure

network[22].

STRIDE is primarily used to respond to

vulnerabilities through the vulnerability

analyses of each component.

Karahasanovic, Kleberger et al. used

STRIDE and TARA to analyze

vulnerabilities in automobiles in “Adapting

Threat Modeling Methods for the

Automotive Industry.”[23]. According to

their study, network vulnerabilities can be

detected using STRIDE in a variety of

network configurations. Therefore, to

detect vulnerabilities in cloud network

environments where various components

exist, STRIDE is used in this study to

classify known CVE vulnerabilities and

subsequently use them to identify

vulnerabilities for each component.

2.3 HARM

HARM is a method that examines the

overall network graph, divides it into a

hierarchy, and examines the

vulnerabilities of each network node to

compute a new network graph[4].

A graph exhibiting vulnerabilities that

can occur in an overall network is

assumed to resemble Fig. 7. In Fig. 7,

the attacker, User 1, and User 2 are

network components, and the lists of

vulnerabilities show the vulnerabilities

for each component. The arrows show the

path and direction of the attack. The

graph of attacks that can occur in an

overall network configuration is assumed

to resemble Fig. 8.[4]. When computing

an attack graph of an overall network

configuration such as Fig. 8, some

difficulties occur in detecting threats that

can appear across multiple network

components owing to the one-dimensional

attack graph.

However, HARM computes attack graphs

that are based on components and

604 STRIDE HARM 기반 클라우드 네트워크 취약 탐지 기법

Fig. 7. Network Graph based vulnerabilities

Fig. 8. Attack Graph Fig. 9. Compute Attack Graph using HARM

vulnerabilities, and it can detect threats

that can appear across multiple network

components. Shown below are the

procedures for using HARM on Fig. 7. to

compute an attack graph for each

component[4].

Step 1 : Compute an attack graph of

the network graph

Compute an attack graph that uses all

the components and the vulnerabilities

for each component in a network graph.

Herein, Fig. 8. is used.

In Fig. 8, the goal of the attacker is to

obtain the root permissions of User 1 and

User 2. The attacker can exploit one or

several vulnerabilities to obtain the

desired permissions[4]. The white

rectangles represent the vulnerabilities,

and the gray rectangles represent the

hosts. The black rectangles represent the

targets, and the arrows represent the

paths.

An attack graph can be computed using

these components.

Step 2 : Analyze the attack graph

Based on the components and

vulnerabilities, possible attack paths

are analyzed in the attack graph

computed in Step 1.

Step 3 : Compute an attack graph

for each component

Shown below is the attack graph for

each component computed from the

analysis results in Step 2.

By computing an attack graph such as

that in Fig. 9, the vulnerabilities of each

component and the paths between

components can be created to easily

understand the attack paths. Through the

example above, it is possible to

understand the attack paths of each

network component for the Attacker, User

1, and User 2. In addition, four attack

정보보호학회논문지 (2019. 6) 605

Section
Sub

section
Description

Cloud

Network

Analysis

Compute

Graph

Compute internal

network graph of the

cloud

Component

Analysis

Analysis of

component-specific

protocols and

environments(OS,

Kernel etc) used in

the cloud

Pre-

setting

STRIDE

Classification of

vulnerabilities

using STRIDE

Protocol

Analysis of

protocol used by

each vulnerability

Environ-

ment

Analysis of

environmental

characteristics of

OS and Kernel

by vulnerability

Test

CVE Test
Vulnerability testing

by component

Compute

Attack

Graph

Configuring attack

graph by CVE

vulnerability using

HARM

Table 3. Section Information

paths are possible: A, B, C, and D.

Listed below are the specific

descriptions of each attack path. The

purpose of each attack path is to obtain a

user’s root permission.

Path A(User 1)

Through Path A, the Attacker can use

the vulnerabilities of User 1’s

ftp_rhosts, rsh, sshd_BoF, and

local_BoF to obtain User 1’s root

permission.

Path B(User 1, User 2)

Through Path B, the Attacker can

access User 2 through User 1 and use

the vulnerabilities of User 2’s

ftp_rhosts, rsh, and local_BoF to obtain

User 2’s root permission.

Path C(User 2)

Through Path C, the Attacker can use

the vulnerabilities of User 2’s

ftp_rhosts, rsh, and local_BoF to obtain

User 2’s root permission.

Path D(User 2, User 1)

Through Path D, the Attack can access

User 1 through User 2 and use the

vulnerabilities of User 1’s ftp_rhosts,

rsh, sshd_BoF, and local_BoF to obtain

User 1’s root permission.

In this study, HARM’s attack path and

vulnerability analysis are used for each

component to analyze the vulnerabilities of

each component and create attack paths

for each vulnerability to detect

vulnerabilities on a cloud network.

III. STRIDE and HARM based Cloud

Network Vulnerability Detection

3.1 Information Used by Vulnerability

Detection Scheme

Table 3. shows the information used in

the vulnerability detection scheme

proposed herein.

The sections in Table 3. are the

execution stages of the proposed

vulnerability detection scheme. The

subsections provide the information used

in each stage, and the descriptions define

this information.

The cloud network’s configuration is

606 STRIDE HARM 기반 클라우드 네트워크 취약 탐지 기법

Fig. 10. Cloud Network Vulnerability Detection

analyzed in the Cloud Network Analysis

section’s Compute Graph subsection, and

the properties (OS, Kernel) of each

network component are analyzed in the

Component Analysis subsection.

The collected CVE vulnerabilities are

classified in the Presetting section’s

STRIDE subsection, and the classified

vulnerabilities’ properties (protocol,

environment) are analyzed in the

Environment subsection.

Through the abovementioned tasks, the

Test section performs simulation tests on

the components of the collected CVE

vulnerabilities and computes the attack

graphs of each vulnerability using HARM.

Hence, the computed attack graphs are

used in this study for each vulnerability to

understand the attack paths of each

vulnerability and detect vulnerabilities in

a cloud network.

3.2 Vulnerability Detection Scheme

Operating Process

Fig. 10. shows the operating process of

the cloud network vulnerability detection

scheme proposed herein that consists of

three phases. The specific phases are

cloud network configuration analysis,

preliminary setup, and simulation

testing/CVE verification, and they are

performed in that sequence. The specific

operating processes for each phase are as

follows.

3.2.1 Phase 1 : Cloud Network Configuration Analysis

Step 1 : Compute an overall cloud

network graph

This step computes the overall network

graph for providing the cloud service

and analyzes the cloud components.

Analyzing the cloud components allows

for attack graphs to be computed later.

Step 2 : Analyze the properties of

each component (communication

protocol, environment)

This step analyzes each component’s

properties such as its communication

protocol and environment. By analyzing

the properties of each component, the

scheme can identify the possible

vulnerabilities of each component later.

정보보호학회논문지 (2019. 6) 607

3.2.2 Phase 2 : Preliminary Setup

Step 3 : Collect known vulnerabilities

(CVE)

This step collects known vulnerabilities

(CVE). Vulnerabilities that can occur

on a cloud network are collected, and

the collected vulnerabilities become the

targets of detection.

Step 4 : Classify the collected

vulnerabilities based on STRIDE

This step classifies the vulnerabilities

collected in Step 3 based on STRIDE.

By using STRIDE to perform

classification, vulnerabilities can be

identified/classified on a cloud network

where a variety of components exist.

Table 4. shows the results of

performing the classification task using

the vulnerabilities in Table 2. Hence,

the results of performing classification

on the collected vulnerabilities with

STRIDE can be known.

STRIDE CVE Number

Spoofing CVE-2019-7304

Tampering CVE-2017-10661

Repudiation CVE-2019-6111

Information

Disclosure
CVE-2019-5418

Denial of Service CVE-2018-6389

Elevation of Privilege CVE-2017-16995

Table 4. STRIDE Classification

Step 5 : Analyze the protocols used

in each vulnerability

This step analyzes the target protocols

where vulnerabilities can occur.

Because various components exist on

the cloud network, the protocols where

vulnerabilities occur can be analyzed to

understand the possibility of a

vulnerability occurring in a certain

component.

Step 6 : Analyze the target

environment of each vulnerability

(Kernel, Windows, Linux, Wordpress,

etc.)

This step analyzes the environments

where vulnerabilities can occur.

Because various components exist on a

cloud network, the target environments

of each vulnerability such as Windows,

Linux, the kernel, etc., can be analyzed

to understand the possibility of a

vulnerability occurring in a certain

component’s environment.

3.2.3 Phase 3 : Simulation Testing/CVE Verification

Step 7 : Simulation Testing

This step uses the collected CVE

vulnerabilities to test the

vulnerabilities of each component. The

actual possibility of a vulnerability

occurring can be understood through

simulation testing.

Step 8 : Compute an attack graph

for each vulnerability

This step analyzes the results of the

simulation tests performed in Step 7.

and the vulnerabilities that can occur

in each component and uses HARM to

compute attack graphs for each

vulnerability. Through the computed

attack graphs, it is possible to

understand the vulnerabilities of the

various components in the cloud

network as well as the possible attack

paths.

608 STRIDE HARM 기반 클라우드 네트워크 취약 탐지 기법

Fig. 11. Scenario Example

IV. Vulnerability Detection Scheme’s

Properties and Scenario Analysis

4.1 Analysis of the Vulnerability Detection

Scheme’s Properties

Of the previously mentioned phases

(cloud network configuration analysis,

preliminary setup, and simulation

testing/CVE verification) the preliminary

setup and simulation testing/CVE

verification phases must be performed

repeatedly through a feedback process.

In Step 3. of the preliminary setup

phase, collection must be performed each

time a new vulnerability is created

because CVE vulnerabilities are

continuously emerging.

In Step 7. of the simulation testing/CVE

verification phase, simulation testing must

be performed when a new vulnerability

emerges to understand the vulnerability in

regards to each network component and an

attack graph must be computed using

HARM.

Plans for responding to the cloud

network vulnerabilities are established

based on the attack graphs computed by

the proposed vulnerability detection

scheme.

The proposed cloud network

vulnerability detection scheme has

difference from HARM as follows.

Identify specific target environments

and vulnerabilities

Unlike existing HARM. it is possible to

identify specific target environments

and vulnerabilities using STRIDE.

Integrated recognition of components

and vulnerabilities

By using the proposed scheme, it is

possible to provide integrated

recognition through vulnerability and

attack path in the whole network as

well as vulnerability and attack path

analysis for each component.

The proposed cloud network

vulnerability detection scheme provides

the following advantages.

Preventing the spread of secondary

damage

Even when a primary intrusion occurs,

the proposed intrusion detection scheme

정보보호학회논문지 (2019. 6) 609

Type CVE number Protocol Environment

S CVE-2019-7304 - Ubuntu(snapd) - 2.28~2.37

T CVE-2017-10661 - Linux Kernel – 4.10.14

R CVE-2019-6111 SCP Ubuntu – 14.04/16.04/18.04

I CVE-2019-5418 - Ubuntu – 14.04/16.04/18.04

D CVE-2018-6389 - wordpress – 4.9.2

E CVE-2017-16995 - Linux Kernel – 4.14.8

Table 5. (Step 3,4.)Vulnerabilities Analysis - : if there are no conditions

can prevent secondary damage by

understanding the components where

vulnerabilities can occur and computing

attack graphs.

Detecting and visualizing vulnerabilities

for a variety of components

A variety of environments and protocols

can exist in a cloud environment. It is

possible to detect vulnerabilities in a

cloud environment where a variety of

environments and protocols exist by

analyzing the vulnerabilities that can

occur in each component’s environment

and protocol. The attack path, type,

target, and scope of damage can be

understood using attack graphs for

visualization.

4.2 Vulnerability detection scenario

Based on the created cloud network

configuration, the vulnerability detection

scheme’s scenario execution process that

was presented in Section 3.2 is as follows.

4.2.1 Phase 1 : Cloud Network Configuration Analysis

Step 1 : Compute an overall cloud

network graph

Fig. 11. shows the graph computed for

the scenario. The computed network

graph consists of a Web Server, VM,

and Admin Server, and the protocols

and environments of each were set up.

Step 2 : Analyze the properties of

each component (communication

protocol, environment)

Fig. 11. shows the results of analyzing

the properties of each component that

executes the scenario.

4.2.2 Phase 2 : Preliminary Setup

Step 3 : Collect known vulnerabilities

(CVE)

To execute the scenario, Table 2. was

used for the vulnerabilities collected in

this step.

Step 4 : Classify the collected

vulnerabilities based on STRIDE

Table 4. was used as the results of

using STRIDE to classify the collected

vulnerabilities.

Step 5 : Analyze the protocol used in

each vulnerability

Step 6 : Analyze the target

environment of each vulnerability

(kernel, Windows, Linux, Wordpress,

etc.)

Table 5. shows the results of analyzing

the vulnerabilities in the results of

Steps 3 and 4.

Table 5. can be used to understand the

properties of each vulnerability

(environment, protocol) and they can

610 STRIDE HARM 기반 클라우드 네트워크 취약 탐지 기법

Fig. 12. T(CVE-2017-10661) Attack Graph

subsequently be used to understand the

vulnerabilities that can occur in each

component.

4.2.3 Phase 3 : Simulation Testing/CVE Verification

Step 7 : Simulation Testing

Use the selected CVE vulnerabilities to

test the vulnerabilities of each

component.

Step 8 : Compute an attack graph

for each vulnerability

Analyze the results of the simulation

tests performed in Step 7. and the

vulnerabilities that can occur in each

component, and compute an attack

graph for each component. Fig. 12.

shows the attack graph computed from

Tampering (CVE-2017-10661), which is

a result of computing attack graphs

computed for each vulnerability.

4.2.4 Analyze vulnerability detection scenarios

Even though a primary intrusion

occurred in the VM and Admin Server, the

attack graph of this scenario’s

T(CVE-2017-10661) vulnerability allowed

for the possibility of secondary spreading

and detection of the T(CVE-2017-10661)

vulnerability to be recognized in the VM

and Admin Server that use a certain

environment.

V. Conclusions

STRIDE and HARM based cloud network

vulnerability detection was proposed

herein to detect vulnerabilities in cloud

networks. The proposed vulnerability

detection scheme performed vulnerability

(CVE) classification using STRIDE and

analyzed the properties of vulnerabilities

such as protocol and environment to

detect the vulnerabilities in various

components existing in a cloud network.

To prevent the spread of secondary

damage from the vulnerabilities used by

an attacker, HARM was used to compute

attack graphs for each vulnerability. The

attack graphs for each vulnerability

obtained by performing simulation tests on

the collected CVE vulnerabilities were

used to simulate countermeasures.

A scenario was presented herein, and

the proposed vulnerability detection

scheme was executed on the scenario to

obtain attack graphs.

The proposed vulnerability detection

scheme could perform detection for known

정보보호학회논문지 (2019. 6) 611

vulnerabilities. However, challenges

occurred in performing detection for

unknown vulnerabilities. Therefore, it will

be necessary to detect unknown

vulnerabilities in future studies.

References

[1] Symantec, "2019 Internet Security

Threat Report", 2019.

[2] Gartner, "Gartner Forecasts Worldwide

Public Cloud Revenue to Grow 17.5

Percent in 2019", 2019.

[3] Wang, L., Yao, C., Singhal, A.,

Jajodia, S., "Interactive analysis of

attack graphs using relational

queries.," Proceedings of 20th IFIP

WG 11.3 Working Conference on Data

and Applications Security(DBSec

2006), pp. 119-132, 2006.

[4] Jin Hong, Dong-Seong Kim, "HARMs:

Hierarchical Attack Representation

Models for Network Security

Analysis," Australian Information

Security Management Conference, pp.

73-81, Dec. 2012.

[5] Tieming Chen, Qingyu Mao1, Mingqi

Lv, Hongbing Cheng, Yinglong Li,

"DroidVecDeep: Android Malware

Detection Based on Word2Vec and

Deep Belief Network," KSII

TRANSACTIONS ON INTERNET AND

INFORMATION SYSTEMS vol. 13,

no. 4, pp. 2180-2197, Apr. 2019.

[6] CVE, "https://cve.mitre.org/about/faqs.

html#what_is_cve_id", May 15, 2019.

[7] CVE, "https://cve.mitre.org/index.html

", May 15, 2019.

[8] Exploitdatabase, "https://www.exploit-

db.com/exploits/46362", May 15, 2019.

[9] Exploitdatabase, "https://www.exploit-

db.com/exploits/43345", May 15, 2019.

[10] Exploitdatabase, "https://www.exploit-

db.com/exploits/46193", May 15, 2019.

[11] Exploitdatabase, "https://www.exploit-

db.com/exploits/46585", May 15, 2019.

[12] Exploitdatabase, "https://www.exploit-

db.com/exploits/43968", May 15, 2019.

[13] Exploitdatabase, "https://www.exploit-

db.com/exploits/45010", May 15, 2019.

[14] STRIDE threat model of Microsoft.

[Online]. Available : https://docs.

microsoft.com/en-us/previous-versions/

commerce-server/ee823878(v=cs.20) Ac

cessed on : May 15, 2019.

[15] Wesam S. Bhaya, Samraa A. AlAsady,

"Prevention of Spoofing Attacks in the

Infrastructure wireless networks,"

Journal of Computer Science, vol. 8,

no. 10, pp. 1769-1779, 2012.

[16] Kavisankar L, Chellappan C,

Sivasankar P, Ashwin Karthi,

Srinivas A,, "A pioneer scheme in the

detection and defense of DrDoS

attack involving spoofed flooding

packets," KSII TRANSACTIONS ON

INTERNET AND INFORMATION

SYSTEMS vol. 8, no. 5, pp.

1726-1743, May. 2014.

[17] Christian S. Collberg, Clark

Thomborson, "Watermarking, Tamper-

Proofing, and Obfuscation-Tools for

Software Protection," IEEE

Transactions on Software Engineering,

vol. 28, no. 8, pp. 735-746, Nov. 2002.

[18] Seul-Ki Choi, Chung-Huang Yang,

and Jin Kwak, "System Hardening

and Security Monitoring for IoT

Devices to Mitigate IoT Security

Vulnerabilities and Threats," KSII

TRANSACTIONS ON INTERNET AND

INFORMATION SYSTEMS vol. 12,

no. 2, pp. 906-918, Feb. 2018.

[19] Adam Shostack, threat modeling-designing

for security, 1st Ed, WILEY, Feb.

2014.

[20] Adrien Bonguet, Martine Bellaiche, "A

Survey of Denial-of-Service and

612 STRIDE HARM 기반 클라우드 네트워크 취약 탐지 기법

< 자소개>

조 정 석 (Jeong-Seok Jo) 학생회원

2018년 2월: 아주 학교 사이버보안학과 학사

2018년 3월～ 재: 아주 학교 컴퓨터공학과 석사과정

< 심분야> 정보보호, 클라우드 컴퓨 보안, 인증 로토콜, 사물인터넷 보안

곽 진 (Jin Kwak) 종신회원

2000년 8월: 성균 학교 학사

2003년 2월: 성균 학교 석사

2006년 2월: 성균 학교 박사

2006년 4월~2006년 11월: 일본 큐슈 학교 방문연구원

2006년 8월~2006년 11월: 일본 큐슈시스템정보기술연구소 특별연구원

2006년 11월~2007년 2월: 정보통신부 정보보호기획단 개인정보보호 통신사무

2007년 3월~2015년 2월: 순천향 학교 정보보호학과 교수

2008년 1월～ 재: 한국정보보호학회 상임이사

2011년 1월～ 재: 한국정보처리학회 이사

2015년 3월～ 재: 아주 학교 사이버보안학과 교수

< 심분야> 자동차 보안, 암호 로토콜, 응용시스템보안, 클라우드 컴퓨 보안, 개인정보

보호, 정보보호제품평가

Distributed Denial of Service Attacks

and Defenses in Cloud Computing,"

Future internet, Aug. 2017.

[21] Pradeepthi K.V, Kannan A., "Cloud

Attack Detection with Intelligent

Rules," KSII TRANSACTIONS ON

INTERNET AND INFORMATION

SYSTEMS vol. 9, no. 10, pp.

4204-4222, Oct. 2015.

[22] Ananth A. Jillepalli, Daniel Conte de

Leon, Stuart Steiner, Jim Alves-Foss,

"Analysis of Web Browser Security

Configuration Options," KSII

TRANSACTIONS ON INTERNET AND

INFORMATION SYSTEMS vol. 12,

no. 12, pp. 6139-6160, Dec. 2018.

[23] A. Karahasanovic, P. Kleberger, M.

Almgren, "Adapting Threat Modeling

Methods for the Automotive

Industry," Proceeding of the 15th

ESCAR Conference, 2017.

