References
- Chen H-M, Wang Y, Su L-H, Chiu C-H. 2013. N ontyphoid Salmonella infection: microbiology, clinical features, and antimicrobial therapy. Pediatr. Neonatol. 54: 147-152. https://doi.org/10.1016/j.pedneo.2013.01.010
- Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 28: 901-937. https://doi.org/10.1128/CMR.00002-15
- Jones TF, Ingram LA, Cieslak PR, Vugia DJ, Tobin-D'Angelo M, Hurd S, et al. 2008. Salmonellosis outcomes differ substantially by serotype. J. Infect. Dis. 198: 109-114. https://doi.org/10.1086/588823
- Jackson B R, Griffin PM, Cole D , Walsh KA, Chai SJ. 2013. Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998-2008. Emerg. Infect. Dis. 19: 1239-1244. https://doi.org/10.3201/eid1908.121511
- Barrow P, Huggins M, Lovell M, Simpson J. 1987. Observations on the pathogenesis of experimental Salmonella typhimurium infection in chickens. Res.Vet. Sci. 42: 194-199. https://doi.org/10.1016/S0034-5288(18)30685-4
- McEwen SA, Fedorka-Cray PJ. 2002. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 34: S93-S106. https://doi.org/10.1086/340246
- Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 112: 5649-5654. https://doi.org/10.1073/pnas.1503141112
- Hopkins S, Muller-Pebody B. 2015. UK one health report: joint report on human and animal antibiotic use, sales and resistance, 2013.
- Yoon R-H, Cha S-Y, Wei B, Roh J-H, Seo H-S, Oh J-Y, et al. 2014. Prevalence of Salmonella isolates and antimicrobial resistance in poultry meat from South Korea. J. Food Prt. 77: 1579-1582. https://doi.org/10.4315/0362-028X.JFP-14-018
- Yang B, Cui Y , Shi C, Wang J, Xia X , Xi M, et al. 2014. Counts, serotypes, and antimicrobial resistance of Salmonella isolates on retail raw poultry in the People's Republic of China. J. Food Prot. 77: 894-902. https://doi.org/10.4315/0362-028X.JFP-13-439
- Antunes P, Mourao J, Campos J, Peixe L. 2016. Salmonellosis: the role of poultry meat. Clin. Microbiol. Infect. 22: 110-121. https://doi.org/10.1016/j.cmi.2015.12.004
- Kim S, Kim E, Park S, Hahn TW, Yoon H. 2017. Genomic approaches for understanding the characteristics of Salmonella enterica subsp. enterica Serovar Typhimurium ST1120, Isolated from Swine Feces in Korea. J. Microbiol. Biotechnol. 27: 1983-1993. https://doi.org/10.4014/jmb.1708.08027
- McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et al. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852. https://doi.org/10.1038/35101614
- Jarvik T, Smillie C , Groisman EA, Ochman H. 2010. Shortterm signatures of evolutionary change in the Salmonella enterica serovar Typhimurium 14028 genome. J. Bacteriol. 192: 560-567. https://doi.org/10.1128/JB.01233-09
- Kroger C, Dillon SC, Cameron AD, Papenfort K, Sivasankaran SK, Hokamp K, et al. 2012. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc. Natl. Acad. Sci. USA 109: E1277-E1286. https://doi.org/10.1073/pnas.1201061109
- Chin C-S, Alexander DH, Marks P , Klammer AA, Drake J , Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569. https://doi.org/10.1038/nmeth.2474
- Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5: R12. https://doi.org/10.1186/gb-2004-5-2-r12
- Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
- Lukashin AV, Borodovsky M. 1998. GeneMark. hmm: new solutions for gene finding. Nucleic Acids Res. 26: 1107-1115. https://doi.org/10.1093/nar/26.4.1107
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35: 3100-3108. https://doi.org/10.1093/nar/gkm160
- Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964. https://doi.org/10.1093/nar/25.5.0955
- Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. 2008. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25: 119-120.
- Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart D S. 2011. PHAST: a fast phage search tool. Nucleic Acids Res. 39: W347-352. https://doi.org/10.1093/nar/gkr485
- Richter M, Rossello-Mora R, Oliver Glöckner F, Peplies J. 2015. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32: 929-931. https://doi.org/10.1093/bioinformatics/btv681
- Yoshida CE, Kruczkiewicz P, Laing CR, Lingohr EJ, Gannon VP, Nash JH, et al 2016. The Salmonella in silico typing resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS One 11: e0147101. https://doi.org/10.1371/journal.pone.0147101
- Tatusova TA, Madden TL. 1999. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174: 247-250. https://doi.org/10.1111/j.1574-6968.1999.tb13575.x
- Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27: 1009-1010. https://doi.org/10.1093/bioinformatics/btr039
- Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. 2016. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45: D566-D573. https://doi.org/10.1093/nar/gkw1004
- Kozyreva VK, C randall J, Sabol A, Poe A , Zhang P , Concepcion-Acevedo J, et al. 2016. Laboratory investigation of Salmonella enterica serovar Poona outbreak in California: comparison of pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) results. PLoS Curr. 8.
- Chen L, Yang J, Yu J, Y ao Z , Sun L, Shen Y, Jin Q . 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 33: D325-D328. https://doi.org/10.1093/nar/gki177
- Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsedfield gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33: 2233-2239. https://doi.org/10.1128/JCM.33.9.2233-2239.1995
- Wonderling L, Pearce R, Wallace FM, Call JE, Feder I, Tamplin M, et al. 2003. Use of pulsed-field gel electrophoresis to characterize the heterogeneity and clonality of Salmonella isolates obtained from the carcasses and feces of swine at slaughter. Appl. Environ. Microbiol. 69: 4177-4182. https://doi.org/10.1128/AEM.69.7.4177-4182.2003
- Seo Y-S, Lee S-H, Shin E-K, Kim S-J, Jung R, Hahn T-W. 2006. Pulsed-field gel electrophoresis genotyping of Salmonella gallinarum and comparison with random amplified polymorphic DNA. Vet. Microbiol. 115: 349-357. https://doi.org/10.1016/j.vetmic.2006.02.019
- Hudzicki J. 2009. Kirby-Bauer disk diffusion susceptibility test protocol.
- Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. 2009. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 49: 1749-1755. https://doi.org/10.1086/647952
- Mottawea W, Duceppe M-O, Dupras AA, Usongo V, Jeukens J, Freschi L, et al. 2018. Salmonella enterica prophage sequence profiles reflect genome diversity and can be used for high discrimination subtyping. Front. Microbiol. 9:836. https://doi.org/10.3389/fmicb.2018.00836
- Oladeinde A, Cook K, Orlek A, Zock G, Herrington K, Cox N, et al. 2018. Hotspot mutations and ColE1 plasmids contribute to the fitness of Salmonella Heidelberg in poultry litter. PLoS One 13: e0202286. https://doi.org/10.1371/journal.pone.0202286
- Popoff MY, Bockemühl J, Gheesling LL. 2004. Supplement 2002 (no. 46) to the Kauffmann-White scheme. Res. Microbiol. 155: 568-570. https://doi.org/10.1016/j.resmic.2004.04.005
- LIm S-K, Nam H-M, Lee H-S, Kim A-R, Jang G-C, Jung S-C, Kim T-S. 2013. Prevalence and characterization of apramycinresistant Salmonella enterica serotype Typhimurium isolated from healthy and diseased pigs in Korea during 1998 through 2009. J. Food Prot. 76: 1443-1446. https://doi.org/10.4315/0362-028X.JFP-13-069
- Cho S-H, Lim Y-S, Kang Y-H. 2012. Comparison of antimicrobial resistance in Escherichia coli strains isolated from healthy poultry and swine farm workers using antibiotics in Korea. Osong Public Health Res. Perspect. 3: 151-155. https://doi.org/10.1016/j.phrp.2012.07.002
- APQA. 2017. Antimicrobial consumption in livestock and Monitoring of antimicrobial resistance in animals and carcasses, 2017. pp75-76. Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do.
- Hensel M, Shea JE, Waterman SR, Mundy R, Nikolaus T, Banks G, et al. 1998. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30: 163-174. https://doi.org/10.1046/j.1365-2958.1998.01047.x
- Lostroh CP, Lee CA. 2001. The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect. 3: 1281-1291. https://doi.org/10.1016/S1286-4579(01)01488-5
- Casjens S. 2003. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49: 277-300. https://doi.org/10.1046/j.1365-2958.2003.03580.x
- Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299-304. https://doi.org/10.1038/35012500
- Mmolawa PT, Willmore R, Thomas CJ, Heuzenroeder MW. 2002. Temperate phages in Salmonella enterica serovar Typhimurium: implications for epidemiology. Int. J. Med. Microbiol. 291: 633-644. https://doi.org/10.1078/1438-4221-00178
- Herrero-Fresno A, Leekitcharoenphon P, Hendriksen RS, Olsen JE, Aarestrup FM. 2014. Analysis of the contribution of bacteriophage ST64B to in vitro virulence traits of Salmonella enterica serovar Typhimurium. J. Med. Microbiol. 63: 331-342. https://doi.org/10.1099/jmm.0.068221-0
- Brown NF, Coombes BK, Bishop JL, Wickham ME, Lowden MJ, Gal-Mor O, et al. 2011. Salmonella phage ST64B encodes a member of the SseK/NleB effector family. PLoS One 6: e17824. https://doi.org/10.1371/journal.pone.0017824
- Swords WE, Cannon BM, Benjamin W. 1997. Avirulence of LT2 strains of Salmonella typhimurium results from a defective rpoS gene. Infect. Immun. 65: 2451-2453. https://doi.org/10.1128/IAI.65.6.2451-2453.1997
- Wilmes-Riesenberg MR, Foster JW, Curtiss R. 1997. An altered rpoS allele contributes to the avirulence of Salmonella typhimurium LT2. Infect. Immun. 65: 203-210. https://doi.org/10.1128/IAI.65.1.203-210.1997
- Chappell L, Kaiser P, Barrow P, Jones MA, Johnston C, Wigley P. 2009. The immunobiology of avian systemic salmonellosis. Vet. Immun. Immunopathol. 128: 53-59. https://doi.org/10.1016/j.vetimm.2008.10.295