DOI QR코드

DOI QR Code

Isolation, Cloning and Co-Expression of Lipase and Foldase Genes of Burkholderia territorii GP3 from Mount Papandayan Soil

  • Received : 2018.12.08
  • Accepted : 2019.05.01
  • Published : 2019.06.28

Abstract

Lipases are industrial enzymes that catalyze both triglyceride hydrolysis and ester synthesis. The overexpression of lipase genes is considered one of the best approaches to increase the enzymatic production for industrial applications. Subfamily I.2. lipases require a chaperone or foldase in order to become a fully-activated enzyme. The goal of this research was to isolate, clone, and co-express genes that encode lipase and foldase from Burkholderia territorii GP3, a lipolytic bacterial isolate obtained from Mount Papandayan soil via growth on Soil Extract Rhodamine Agar. Genes that encode for lipase (lipBT) and foldase (lifBT) were successfully cloned from this isolate and co-expressed in the E. coli BL21 background. The highest expression was shown in E. coli BL21 (DE3) pLysS, using pET15b expression vector. LipBT was particulary unique as it showed highest activity with optimum temperature of $80^{\circ}C$ at pH 11.0. The optimum substrate for enzyme activity was $C_{10}$, which is highly stable in methanol solvent. The enzyme was strongly activated by $Ca^{2+}$, $Mg^{2+}$, and strongly inhibited by $Fe^{2+}$ and $Zn^{2+}$. In addition, the enzyme was stable and compatible in non-ionic surfactant, and was strongly incompatible in ionic surfactant.

Keywords

References

  1. Hasan F, Shah AA, Hamed A. 2006. Industrial application of microbial lipases. Enzyme. Microbiol. Technol. 39: 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
  2. Yang J, Guo D, Yan Y. 2007. Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from Burkholderia cepacia strain G63. J. Mol. Catal. B. 45: 91-96. https://doi.org/10.1016/j.molcatb.2006.12.007
  3. Sebastian J, Muraleedharan C, Santhiagu A. 2016. A comparative study between chemical and enzymatic transesterification of high free fatty acid contained rubber seed oil for biodiesel production. Cog. Eng. 3: 1-12.
  4. Wang X, Yu X, Xu Y. 2009. Homologous expression, purification and characterization of a novel high-alkaline and thermal stable lipase from Burkholderia cepacia ATCC 25416. Enzyme. Microb. Technol. 45: 94-102. https://doi.org/10.1016/j.enzmictec.2009.05.004
  5. Alnoch RC, Stefanello AA, Martini VP, Richter JL, Mateo C, de Souza EM, et al. 2018. Co-expression, purification and characterization of the lipase and foldase of Burkholderia contaminans LTEB11. Int. J. Biol. Macromol. 116: 1222-1231. https://doi.org/10.1016/j.ijbiomac.2018.05.086
  6. Arpigny JE, Jaeger KE. 1999. Bacterial lipolytic enzymes: classification and properties. J. Biochem. 343(1): 177-183. https://doi.org/10.1042/bj3430177
  7. Quyen DT, Schmidt-Dannert C, Schmid RD. 1999. Highlevel formation of active Pseudomonas cepacia lipase atfter heterologous expression of the encoding gene and its modified foldase in Escherichia coli and rapid in vitro refolding. Appl. Environ. Microbiol. 65: 787-794. https://doi.org/10.1128/AEM.65.2.787-794.1999
  8. Martini VP, Glogauer A, Muller-Santos M, Iulek J, de Souza EM, Mitchell DA, et al. 2014. First co-expression of a lipase and its specific foldase obtained by metagenomics. Microb. Cell Fact. 13: 171 https://doi.org/10.1186/s12934-014-0171-7
  9. Marchesi JR, et al. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799. https://doi.org/10.1128/AEM.64.2.795-799.1998
  10. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
  11. Humphrey W, Dalke A, Schulten K. 1996. VMD: Visual Molecular Dynamics. J. Mol. Graph. 14: 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  12. Sambrook J, Green RM. 2012. Molecular cloning: A Laboratory Manual 4th Edition. New York(US): Cold Spring Harbor.
  13. Ceroni A, Passerini A, Vullo A, and Frasconi P. 2006. DISULFIND: a Disulfide Bonding State and Cysteine Connectivity Prediction Server. Nucleic Acids Res. 34: 177-181. https://doi.org/10.1093/nar/gkl266
  14. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46: 296-303.
  15. Uziela K, Hurtado DM, Shu N, Wallner B, Elofsson A. 2017. ProQ3D: Improved model quality assessments using Deep Learning. Bioinformatics 33: 1578-1580.
  16. Kim YO, Khosasih V, Nam BH, Lee SJ, Suwanto A, Kim HK. 2012, Gene cloning and catalytic characterization of cold adapted lipase of Photobacterium sp. MA1-3 isolated from blood clam. J. Biosci. Bioeng. 114: 589-595. https://doi.org/10.1016/j.jbiosc.2012.06.013
  17. Hamaki T, Suzuki M, Fudou R, Jojima Y, Kajiura T, Tabuchi A, et al. 2005. Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J. Biosci. Bioeng. 99: 485-492. https://doi.org/10.1263/jbb.99.485
  18. Basu S, Bose C, Ojha N, Das N, Das J, Pal M, Khurana S. 2015. Evolution of bacterial and fungal growth media. Bioinformation 11: 182-184. https://doi.org/10.6026/97320630011182
  19. De Smet B, Mayo M, Peeters C, Zlosnik JE, Spilker T, Hird TJ, et al. 2015. Burkholderia stagnalis sp. nov. And Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. Int. J. Syst. Evol. Microbiol. 65: 2265-71. https://doi.org/10.1099/ijs.0.000251
  20. Bane SE, Velasquez JE, Robinson AS. 2006. Expression and purification of milligram levels of inactive G-protein coupled receptors in E. coli. Protein Expr. Purif. 52: 348-355. https://doi.org/10.1016/j.pep.2006.10.017
  21. Arifin, Ranlym A, Kim SJ, Yim JH, Suwanto A, Kim HK. 2013. Isolation and biochemical characterization of Bacillus pumilus lipases from the Antartic. J. Microbiol. Biotechnol. 23: 661-667. https://doi.org/10.4014/jmb.1212.12040
  22. Takeda Y, Aono R, Doukyu N. 2006. Purification, characterization, and molecular cloning of organic-solventtolerant cholesterol esterase from cyclohexanetolerant Burkholderia cepacia strain ST-200. Extremophiles 10: 269-277. https://doi.org/10.1007/s00792-005-0494-8
  23. Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: an overview of production, purification, and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781. https://doi.org/10.1007/s00253-004-1568-8
  24. Liu T, Wang Y, Luo X, Li J, Reed SA, Xiao H, et al. 2016. Enhancing protein stability with extended disulfide bonds. Proc. Natl. Acad. Sci. USA 113: 5910-5915. https://doi.org/10.1073/pnas.1605363113
  25. Svendsen A, Borch K , Barfoed M, Nielsen TB, Gormsen E, Patkar SA. 1995. Biochemical properties of cloned lipases fromthe Pseudomonas family. Biochim. Biophys. Acta 1259: 9-17. https://doi.org/10.1016/0005-2760(95)00117-U
  26. Seitz EW. 1974. Industrial applications of microbial lipases-a review. J. Am. Oil. Chem. Soc. 51: 12-16. https://doi.org/10.1007/BF02545206
  27. Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A. 2012. Lipases and Phospholipases: Methods and Protocols, pp. 4-11. Springer Science Business Media, New York.
  28. Hertadi R, Widhyastuti H. 2015. Effect of Ca2+ to the activity and stability of lipase isolated from Chromohalobacter japonicas BK-AB18. Procedia Chem. 16: 306-313. https://doi.org/10.1016/j.proche.2015.12.057
  29. Liebeton K, Zacharias A, Jaeger KE. 2001. Disulfide bound in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for inetraction with its foldase. J. Bacteriol. 183: 597-603. https://doi.org/10.1128/JB.183.2.597-603.2001
  30. Cherif S, Mnif S, Hadrich F, Abdelkafi S, Sayadi S. 2011. A new highly alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health Dis. 10: 221. https://doi.org/10.1186/1476-511X-10-221

Cited by

  1. Emerging priorities for microbial metagenome research vol.11, 2019, https://doi.org/10.1016/j.biteb.2020.100485
  2. Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry vol.10, pp.9, 2019, https://doi.org/10.3390/catal10091032
  3. Co-Expression of a Thermally Stable and Methanol-Resistant Lipase and Its Chaperone from Burkholderia cepacia G63 in Escherichia coli vol.193, pp.3, 2019, https://doi.org/10.1007/s12010-020-03453-0