References
- Liu SP, Zhang L, Mao J, Ding ZY, Shi GY. 2015. Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives. Metab. Eng. 32: 55-65. https://doi.org/10.1016/j.ymben.2015.09.007
- Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, et al. 2014. Systematic metabolic engineering of Escherichia coli for highyield production of fuel bio-chemical 2,3-butanediol. Metab. Eng. 23: 22-33. https://doi.org/10.1016/j.ymben.2014.02.004
- Lee SY, Kim HU. 2015. Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33: 1061-1072. https://doi.org/10.1038/nbt.3365
- Keasling JD. 2010. Manufacturing molecules through metabolic engineering. Science 330: 1355-1358. https://doi.org/10.1126/science.1193990
- Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, et al. 2013. Engineering dynamic pathway regulation using stress-response promoters. Nat. Biotechnol. 31: 1039-1046. https://doi.org/10.1038/nbt.2689
- Sinha J, Reyes SJ, Gallivan JP. 2010. Reprogramming bacteria to seek and destroy an herbicide. Nat. Chem. Biol. 6: 464-470. https://doi.org/10.1038/nchembio.369
-
Fowler CC, Brown ED, Li Y. 2010. Using a riboswitch sensor to examine coenzyme
$B_{12}$ metabolism and transport in E. coli. Chem. Biol. 17: 756-765. https://doi.org/10.1016/j.chembiol.2010.05.025 - Liu Y, Zhuang Y, Ding D, Xu Y, Sun J, Zhang D. 2017. Biosensor-based evolution and elucidation of a biosynthetic pathway in Escherichia coli. ACS Synth. Biol. 6: 837-848. https://doi.org/10.1021/acssynbio.6b00328
- Zhang F, Carothers JM, Keasling JD. 2012. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30: 354-359. https://doi.org/10.1038/nbt.2149
- Moser F, Espah Borujeni A, Ghodasara AN, Cameron E, Park Y, Voigt CA. 2018. Dynamic control of endogenous metabolism with combinatorial logic circuits. Mol. Syst. Biol. 14: e8605. https://doi.org/10.15252/msb.20188605
- Tan SZ, Manchester S, Prather KL. 2016. Controlling central carbon metabolism for improved pathway yields in saccharomyces cerevisiae. ACS Synth. Biol. 5: 116-124. https://doi.org/10.1021/acssynbio.5b00164
- Gupta A, Reizman IM, Reisch CR, Prather KL. 2017. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat. Biotechnol. 35: 273-279. https://doi.org/10.1038/nbt.3796
- Reizman IM, Stenger AR, Reisch CR, Gupta A, Connors NC, Prather KL. 2015. Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes. Metab. Eng. Commun. 2: 109-116. https://doi.org/10.1016/j.meteno.2015.09.002
- Ding D, Liu Y, Xu Y, Zheng P, Li H, Zhang D, et al. 2016. Improving the production of L-phenylalanine by identifying key enzymes through multi-enzyme reaction system in vitro. Sci. Rep. 6: 32208. https://doi.org/10.1038/srep32208
- Liu Y, Xu Y, Ding D, Wen J, Zhu B, Zhang D. 2018. Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnol. 18: 5. https://doi.org/10.1186/s12896-018-0418-1
- Alberto Rodriguez JAM, Noemi Flores, Adelfo Escalante, Guillermo Gosset and Francisco Bolivar. 2014. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb. Cell Fact. 13: 126.
- Liu SP, Xiao MR, Zhang L, Xu J, Ding Z-Y, Gu Z-H, et al. 2013. Production of L-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110. Process Biochem. 48: 413-419. https://doi.org/10.1016/j.procbio.2013.02.016
-
Zhou H, Liao X, Wang T, Du G, Chen J. 2010. Enhanced l-phenylalanine biosynthesis by co-expression of
$pheA^{Fbr}$ and$aroF^{Wt}$ . Bioresour. Technol. 101: 4151-4156. https://doi.org/10.1016/j.biortech.2010.01.043 - Khamduang M, Packdibamrung K, Chutmanop J, Chisti Y, Srinophakun P. 2009. Production of L-phenylalanine from glycerol by a recombinant Escherichia coli. J. Ind. Microbiol. Biotechnol. 36: 1267-1274. https://doi.org/10.1007/s10295-009-0606-z
- Zhang Y, Meng Q, Ma H, Liu Y, Cao G, Zhang X, et al. 2015. Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis. Microb. Cell Fact. 14: 86. https://doi.org/10.1186/s12934-015-0275-8
- Kramer M, Bongaerts J, Bovenberg R, Kremer S, Muller U, Orf S, et al. 2003. Metabolic engineering for microbial production of shikimic acid. Metab. Eng. 5: 277-283. https://doi.org/10.1016/j.ymben.2003.09.001
- Zhao D, Yuan S, Xiong B, Sun H, Ye L, Li J, et al. 2016. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb. Cell Fact. 15: 205. https://doi.org/10.1186/s12934-016-0605-5
- Yang J, Ganesan S, Pittard AJ. 1993. A genetic analysis of various functions of the TyrR protein of Escherichia coli. J. Bacteriol. 175: 1767-1776. https://doi.org/10.1128/jb.175.6.1767-1776.1993
- Yang J, Hwang JS, Camakaris H, Irawaty W, Ishihama A, Pittard J. 2004. Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli. Mol. Microbiol. 52: 243-256. https://doi.org/10.1111/j.1365-2958.2003.03965.x
- Andrews AE DB, Lawley B, Cobbett C, Pittard AJ. 1991. Importance of the position of TYR R boxes for repression and activation of the tyrP and aroF genes in Escherichia coli. J. Bacteriol. 173: 5079-5085. https://doi.org/10.1128/jb.173.16.5079-5085.1991
- Liu SP, Liu RX, Xiao MR, Zhang L, Ding ZY, Gu ZH, et al. 2014. A systems level engineered E. coli capable of efficiently producing L-phenylalanine. Process Biochem. 49: 751-757. https://doi.org/10.1016/j.procbio.2014.01.001
- Dell KA, Frost JW. 1993. Identification and removal of impediments to biocatalytic synthesis of aromatics from Dglucose: Rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis J. Am. Chem. Soc. 115: 11581-11589. https://doi.org/10.1021/ja00077a065
- Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R. 2004. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol. Prog. 20: 1623-1633. https://doi.org/10.1021/bp0498746
- Lutke-Eversloh T, Stephanopoulos G. 2008. Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression. Metab. Eng. 10: 69-77. https://doi.org/10.1016/j.ymben.2007.12.001
- Kim SC, Min BE, Hwang HG, Seo SW, Jung GY. 2015. Pathway optimization by re-design of untranslated regions for L-tyrosine production in Escherichia coli. Scientific Rep. 5: 13853. https://doi.org/10.1038/srep13853
Cited by
- Construction of a switchable synthetic Escherichia coli for aromatic amino acids by a tunable switch vol.47, pp.2, 2019, https://doi.org/10.1007/s10295-020-02262-y
- Microbial Engineering for Production ofN‐Functionalized Amino Acids and Amines vol.15, pp.7, 2019, https://doi.org/10.1002/biot.201900451
- Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? vol.8, pp.1, 2019, https://doi.org/10.1186/s40168-020-00823-y
- Dynamic control in metabolic engineering: Theories, tools, and applications vol.63, 2021, https://doi.org/10.1016/j.ymben.2020.08.015
- Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends vol.26, pp.5, 2019, https://doi.org/10.1007/s12257-020-0390-1
- Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation vol.55, 2022, https://doi.org/10.1016/j.biotechadv.2021.107887