DOI QR코드

DOI QR Code

Serotype Distribution and Virulence Profile of Salmonella enterica Serovars Isolated from Food Animals and Humans in Lagos Nigeria

  • Abraham, Ajayi (Department of Microbiology, University of Lagos Akoka) ;
  • Stella, Smith (Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research Lagos) ;
  • Ibidunni, Bode-Sojobi (Department of Medical Microbiology, Lagos University Teaching Hospital) ;
  • Coulibaly, Kalpy Julien (Centre Nationale de Reference de Salmonella, Laboratoire de Bacteriologie et Virologie Institut Pasteur de Cote d'Ivoire) ;
  • Funbi, Jolaiya Tolulope (Department of Microbiology, University of Lagos Akoka) ;
  • Isaac, Adeleye Adeyemi (Department of Microbiology, University of Lagos Akoka)
  • Received : 2018.08.16
  • Accepted : 2018.10.26
  • Published : 2019.06.28

Abstract

Distribution of Salmonella enterica serovars and their associated virulence determinants is wide-spread among food animals, which are continuously implicated in periodic salmonellosis outbreaks globally. The aim of this study was to determine and evaluate the diversity of five Salmonella serovar virulence genes (invA, pefA, cdtB, spvC and iroN) isolated from food animals and humans. Using standard microbiological techniques, Salmonella spp. were isolated from the feces of humans and three major food animals. Virulence determinants of the isolates were assayed using PCR. Clonal relatedness of the dominant serovar was determined via pulsed-field gel electrophoresis (PFGE) using the restriction enzyme, Xbal. Seventy one Salmonella spp. were isolated and serotyped into 44 serovars. Non-typhoidal Salmonella (NTS; 68) accounted for majority (95.8%) of the Salmonella serovars. Isolates from chicken (34) accounted for 47.9% of all isolates, out of which S. Budapest (14) was predominant (34.8%). However, the dominant S. Budapest serovars showed no genetic relatedness. The invA gene located on SPI-1 was detected in all isolates. Furthermore, 94% of the isolates from sheep harbored the spvC genes. The iroN gene was present in 50%, 100%, 88%, and 91% of isolates from human, chicken, sheep, and cattle, respectively. The pefA gene was detected in 18 isolates from chicken and a single isolate from sheep. Notably, having diverse Salmonella serovars containing plasmid encoded virulence genes circulating the food chain is of public health significance; hence, surveillance is required.

Keywords

References

  1. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, et al. 2010. The global burden of non-typhoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50: 882-889. https://doi.org/10.1086/650733
  2. Levantesi C, Bonadonna L, Briancesco R, Grohmann E, Toze S, Tandoi V. 2012. Salmonella in surface and drinking water: Occurrence and water-mediated transmission. Food Res. Int. 45: 587-602. https://doi.org/10.1016/j.foodres.2011.06.037
  3. Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, et al. 2012. Intra-continental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat. Genet. 44: 1215-1221. https://doi.org/10.1038/ng.2423
  4. Lim SH, Methe BA, Knoll BM, Morris A, Obaro SK. 2018. Invasive non-typhoidal Salmonella in sickle cell disease in Africa: is increased gut permeability the missing link. J. Transl. Med. 16: 239. https://doi.org/10.1186/s12967-018-1622-4
  5. Smith SI, Seriki A, Ajayi A. 2016. Typhoidal and non-typhoidal Salmonella infection in Africa. Euro. J. Clin. Microbiol. Infect. Dis. 35: 1913-1922. https://doi.org/10.1007/s10096-016-2760-3
  6. Mkrtchyan MS, Zakharyan MK, Arakelova KA, Sedrakyan AM, Gevorgyan ZU, Ktsoyan ZA. 2016. Molecular determinants of virulence genes of Salmonella Enteritidis prevailing in Armenia. Proceedings of the Yerevan State University 1: 55.
  7. Fazl AA, Salehi IZ, Jamshidian M, Amini K, Jangjou AH. 2013. Molecular detection of invA, ssaP, sseC and pipB genes in Salmonella Typhimurium isolated from human and poultry in Iran. Afri. J. Microbiol. Res. 7: 1104-1108.
  8. Elemfareji OI, Thong KL. 2013. Comparative virulotyping of Salmonella typhi and Salmonella Enteritidis. Indian J. Microbiol. 53: 410-417. https://doi.org/10.1007/s12088-013-0407-y
  9. Rotger R, Casadesus J. 1999. The virulence plasmids of Salmonella. Int. Microbiol. 2: 177-184.
  10. Oludairo OO, Kwaga JKP, Dzikwi AA, Kabir J. 2013. Detection of invA virulence gene by polymerase chain reaction (PCR) in Salmonella spp. isolated from captive wildlife. Bio-Genet. J. 1: 12-14.
  11. Rowlands REG, Ristori CA, Ikuno AA, Barbosa ML, Jakabi M, de Melo Franco BDG. 2014. Prevalence of drug resistance and virulence features in Salmonella spp. isolated from foods associated or not with salmonellosis in Brazil. Revi. Inst. Med. Trop. Sao Paulo. 56: 461-467. https://doi.org/10.1590/S0036-46652014000600001
  12. Kariuki S, Revathi G, Kariuki N, Kiru J, Mwituria J, Muyodi J, et al. 2006. Invasive multidrug resistant non-typhoidal Salmonella infections in Africa: zoonotic or anthroponotic transmission. J. Med. Microbiol. 55: 585-591. https://doi.org/10.1099/jmm.0.46375-0
  13. Marshall KEH, Tewell M, Tecle S, Leeper M, Sinatra J, Kissler B, et al. 2018. Protracted outbreak of Salmonella Newport infections linked to ground beef: possible role of dairy cows-21 states, 2016-2017. MMWR Morb. Mortal. Wkly Rep. 67: 443-446. https://doi.org/10.15585/mmwr.mm6715a2
  14. Omer MK, Alvarez-Ordonez A, Prieto M, Skjerve E, Asehun T, Alvseike OA. 2018. A systematic review of bacterial food borne outbreaks related to red meat and meat products. Foodborne Pathog. Dis. 15: 598-611. https://doi.org/10.1089/fpd.2017.2393
  15. Huusko S, Pihlajasaari A, Salmenlinna S, Sogel J, Dontsenko I, De Pinna E, et al. 2017. Outbreak of Salmonella Enteritidis phage type 1B associated with frozen pre-cooked chicken cubes, Finland 2012. Epidemiol. Infect. 145: 2727-2734. https://doi.org/10.1017/S0950268817001364
  16. Capuano F, Mancusi A, Capparelli R, Esposito S, Proroga YTR. 2013. Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. Foodborne Pathog. Dis. 10: 963-968. https://doi.org/10.1089/fpd.2013.1511
  17. Adagbada AO, Coker AO, Smith SI, Adesida SA. 2014. The prevalence and plasmid profile of non-typhoidal salmonellosis in children in Lagos metropolis, South-Western Nigeria. Pan. Afr. Med. J. 19: 359.
  18. Grimont PAD, Weill FX. 2007. Antigenic formulae of the Salmonella serovas, 9th edition, world health organization collaborating center for reference and research on Salmonella Institute Pasteur, Paris France.
  19. Heras J, Dominguez C, Mata E, Pascual V, Lozano CT, Torres C, et al. 2015. GelJ-a tool for analzing DNA fingerprint gel images. Bioinformatics 16: 270.
  20. Adi PJ, Naidu JR, Matcha B. 2017. Multiplex quantification of Escherichia coli, Salmonella Typhi and Vibrio cholera with three DNA targets in single reaction assay. Microb. Pathog. 110: 50-55. https://doi.org/10.1016/j.micpath.2017.06.010
  21. Chiu CH, Ou JT. 1996. Rapid identification of Salmonella serovars in faeces by specific detection of virulence genes, invA and spvC, by an enrichment broth-multiplex PCR combination assay. J. Clin. Microbiol. 34: 2619-2622. https://doi.org/10.1128/JCM.34.10.2619-2622.1996
  22. Mezal EH, Stefanova R, Khan AA. 2013. Isolation and molecular characterization of Salmonella enterica serovar Javiana from food environmental and clinical samples. International J. Food Microbiol. 164: 113-118. https://doi.org/10.1016/j.ijfoodmicro.2013.03.021
  23. Andino A, Hanning I. 2015. Salmonella enterica survival colonization and virulence differences among serovar. ScientificWorld J. 2015: 520179.
  24. Fagbamila IO, Barco L, Mancin M, Kwaga K, Ngulukun SS, Zavagnin P, et al. 2017. Salmonella serovar and their distribution in Nigerian commercial chicken layer farms. PLoS One 12: e0173097. https://doi.org/10.1371/journal.pone.0173097
  25. Morpeth SC, Ramadhani HO, Crump JA. 2009. Invasive non-typhi Salmonella disease in Africa. Clin. Infect. Dis. 49: 606-611. https://doi.org/10.1086/603553
  26. Medalla F, Gu W, Malion BE, Judd M, Folster J, Griffin PM, et al. 2017. Estimated incidence of Antimicrobial drug resistant nontyphoidal Salmonella infections, United States, 2004-2012. Emerg Infect. Dis. 23: 29-37.
  27. van Asten AJAM, van Dijk JE. 2005. Distribution of classic virulence factors among Salmonella spp. FEMS Immunol. Med. Microbiol. 44: 251-259. https://doi.org/10.1016/j.femsim.2005.02.002
  28. El-Feky MA, Hassan MA, Mohamed WA, Ibrahim NH, Rashwan RS. 2014. Detection of invA gene in non-typhoidal Salmonella isolated from food products and clinical cases. Egypt J. Med. Microbiol. 23: 33-41. https://doi.org/10.12816/0024884
  29. Smith SI, Fowora MA, Atiba A, Anejo-Okopi J, Fingesi T, Adamu ME, et al. 2015. Molecular detection of some virulence genes in Salmonella spp. isolated from food samples in Lagos, Nigeria. Anim. Vet. Sci. 3: 22-27.
  30. Rychlik I, Gregorova D, Hradecka H. 2006. Distribution and function of plasmids in Salmonella enterica. Vet. Microbiol. 112: 1-10. https://doi.org/10.1016/j.vetmic.2005.10.030
  31. Borges KA, Furian TQ, Borsoi A, Moraes HLS, Salle CTP, Nascimento VP. 2013. Detection of virulence-associated genes in Salmonella Enteritidis isolated from chicken in Southern Brazil. Pesq. Vet. Bras. 33: 1416-1422. https://doi.org/10.1590/S0100-736X2013001200004
  32. Huehn S, La Ragione RM, Anjum M, Saunders M, Woodward MJ, Bunge C, et al. 2010. Virulotyping and antimicrobial resistance typing of Salmonella enterica serovars relevant to human health in Europe. Foodborne Pathog. Dis. 7: 523-535. https://doi.org/10.1089/fpd.2009.0447
  33. Figueiredo R, Card R, Nunes C, Abuoun M, Bagnall MC, Nunez J, et al. 2015. Virulence characterization of Salmonella enterica by a new microarray: detection and evaluation of the cytolethal distending toxin gene activity in the unusal host S. Tyhimurium. PLoS One 10: e0135010. https://doi.org/10.1371/journal.pone.0135010
  34. Zou M, Keelara S, Thakur S. 2012. Molecular characterization of Salmonella enterica serotype Enteritidis isolated from humans by antimicrobial resistance, virulence genes and pulsed field gel electrophoresis. Foodborne Pathog. Dis. 9: 1-7. https://doi.org/10.1089/fpd.2011.0910
  35. Foley SL, Johson JJ, Ricke SC, Nayak R, Danzelsen J. 2013. Salmonella pathogenicity and host adaptation in chicken associated serovars. Microbiol. Mol. Biol. Rev. 77: 582-607. https://doi.org/10.1128/MMBR.00015-13

Cited by

  1. Plasmid profile and role in virulence of salmonella enterica serovars isolated from food animals and humans in Lagos Nigeria vol.113, pp.6, 2019, https://doi.org/10.1080/20477724.2019.1691364
  2. Molecular and phenotypic characterization of efflux pump and biofilm in multi-drug resistant non-typhoidal Salmonella Serovars isolated from food animals and handlers in Lagos Nigeria vol.3, pp.1, 2021, https://doi.org/10.1186/s42522-021-00035-w