
Introduction

Head and neck squamous cell carcinoma (HNSCC) is a group 

of cancer mostly arising in head and the region comprising 

epithelial layer of oral cavity, nasal cavity, larynx and pharynx 

[1,2]. It is not clear what causes the mutations in squamous 

cells leading to HNSCC but alcohol use and tobacco smoking 

have been identified as risk factors. Statistical research in the 

UK showed that more than 75% of mouth and oropharyngeal 

cancers are attributed to the consumption of alcohol and to-

bacco [3,4]. In addition these factors have synergistic effects 

that people who use both alcohol and tobacco are at higher 

risk of oral cancer because alcohol has dehydrating effect on 

cell membrane inducing specific carcinogens in tobacco to be 

absorbed into oral cells [5]. Other risk factors which contribute 

to the incidence of HNSCC in community include human papil-

loma virus infection, chronic immunodeficiency and exces-

sive sunlight exposure [3]. Despite the extensive efforts for 

early diagnosis and development in therapeutics, over half of 

patients with HNSCC were diagnosed at advanced stage and 

high proportion of them developed cancer [6]. Conventional 

treatment was not successful in improving five-year survival 

rate of HNSCC patients which remains in the ranges of 40% to 

50%. Surgery or radiotherapy was applied for the treatment of 
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the early stage while multimodal treatment such as combina-

tion of radiotherapy with chemotherapy and/or molecular-tar-

geted therapies using monoclonal antibodies were applied for 

the advanced HNSCCs [7]. Especially hypopharyngeal cancer 

which shows the worst prognosis and the lowest 5-year sur-

vival rate (25% to 40%) [8,9] is in urgent need for the efficient 

therapeutics.

Tannic acid (TA), also called gallotannin, is a water-soluble 

polyphenols with multi-gallic acid moieties in chemical struc-

ture which is found in various plants. Especially grape and 

green tea contain high level of TA, and in the production of 

commercial wine and tea TA plays a critical role for the genera-

tion of color and flavor. TA is also used as a flavoring agent in 

food industry or as additives in ink manufacturing [10]. Previ-

ous reports showed that TA has various therapeutic effects of 

anti-inflammation [11], antioxidation [12,13], and anti-tumor 

[14,15]. 

For anti-tumor effects, TA suppressed cell proliferation on 

cancer cell lines such as prostate cancer [16], breast cancer 

[17,18], and malignant glioma [19]. Interestingly, TA effects 

on tumor cell lines were cell-type dependent. In breast cancer 

cells, TA induced G1-arrest and apoptosis through regulating 

both canonical and non-canonical signal transducer and acti-

vator of transcription (STAT) pathway [18] whereas TA inhib-

ited cell cycle arrest at G2/M phase and stimulated apoptosis 

through p53 induction in T98G glioma cell lines [20]. In case of 

gingival cancer cells, TA exhibited apoptosis by cell cycle arrest 

at G1 phase by inhibiting Jak2/STAT3 pathway [21]. Thus, our 

intent in this study was to evaluate whether TA has any spe-

cific cellular effects on hypopharyngeal squamous cancer cells 

and if so what would be the underlying mechanism to eluci-

date. Here, we report that TA suppresses the proliferation of 

FaDu hypopharyngeal squamous cells by arresting cell cycle at 

G2/M phase and induces apoptosis possibly through the sig-

naling pathway of extracellular signal-regulated kinase (ERK)/

mitogen-activated protein kinase (MAPK) and AKT. 

Materials and Methods

1. Materials and reagents

Dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT), TA was pur-

chased from Sigma Aldrich (St Louis, MO, USA). Ten percent 

fetal bovine serum (FBS), 0.05% trypsin-EDTA (ethylene 

diamine tetraacetic acid) and antibiotic-antimycotic solution 

were obtained from WELGENE (Gyeongsan, Korea). Primary 

antibodies of cyclins, cyclin-dependent kinases (CDKs), pro-

caspase 3 and caspase 9 were from Santa Cruz Biotechnology 

Inc. (Santa Cruz, CA, USA) and cleaved caspase 3, cleaved 

caspase 7 and phosphorylated-ERK (p-ERK) were from Cell 

Signaling Technology Inc. (Danver, CA, USA). Anti-tubulin, 

anti-pericentrin and cleaved-PARP (poly [ADP-ribose] poly-

merase) antibodies were purchased from Abcam (Cambridge, 

MA, USA). Secondary antibodies were purchased from Novus 

Biologicals (Centennial, CO, USA).

2. Cell culture

FaDu hypopharyngeal squamous cell carcinoma was ob-

tained from Korean Cell Line Bank (Seoul, Korea) and cultured 

in minimun essential media (MEM) media containing 10% FBS 

and 1% amoxicillin and streptomycin. The cells were seeded at 

the density of 2 × 105 cells/mL and incubated in 37℃, 5% CO2 

for 24 hours.

3. MTT assay

Two × 104 cells/well were seeded in 96-well plate and incu-

bated for 24 hours. After treating with various concentrations 

of TA for 24 hours, the media were replaced by 200 µL of MTT 

solution (0.5 mg/mL). The cells were further incubated for 4 

hours at 37℃ until formazan crystals were formed. The old 

media were aspirated and 200 µL of DMSO was added to dis-

solve formazan. The absorbance was measured at 540 nm by 

using MultiskanTM FC Microplate Photometer (Thermo Fisher 

Scientific Inc., Waltham, MA, USA). 

4. Cell cycle analysis

FaDu cells were seeded in 100 mm culture dish for 24 hours 

and then followed by TA treatment at a concentration range 

from 0 to 100 μM. After 24 hours, cells were trypsinized, 

washed and fixed in 70% ethanol. The fixed cells were washed 

by phosphate buffered saline (PBS) to remove ethanol trace, 

treated with ribonuclease (200 µg/mL) and stained with prop-

idium iodide (50 µg/mL). Flow cytometer was used to identify 

DNA content of 10,000 cells per sample and the data was 

analyzed by Cellquest software (BD Biosciences, San Jose, 

CA, USA).
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5. Western blotting

After TA treatment on FaDu cells, cells were collected to 

carry out protein extraction. The total proteins were separated 

in sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

(SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF) 

membranes. The membranes were blocked with skim milk 5% 

in PBS with Tween 20 for 1 hour, incubated overnight at 4℃ 

with primary antibody of a target protein. After washing (×3) 

with tris buffered saline (TBS) 0.1% Tween-20 for 15 minutes, 

the membrane was incubated with corresponding horserad-

ish peroxidase (HRP)-conjugated secondary antibodies for 2 

hours at room temperature, and then followed by additional 

washing (×3). Proteins were exposed with chemiluminescent 

HRP substrate (Millipore Corporation, Billerica, MA, USA) and 

detected by imaging system (Kodak image station; Bruker Bio-

Spin, Billerica, MA, USA).

6. Immunofluorescence imaging

FaDu cells (1 × 105/well) were seeded in coverslip contain-

ing 24-well plate and incubated for 24 hours prior to TA treat-

ment. After treating with TA, cells were washed with PBS and 

fixed with 4% paraformaldehyde for 30 minutes at room tem-

perature. The chamber slides were incubated with antibodies 

of tubulin or pericentrin overnight at 4℃. Prior to the treatment 

with secondary antibodies, cells were completely washed with 

TBS plus 0.1% Tween to eliminate residual unconjugated anti-

bodies. For nuclei staining DAPI (4’,6-diamino-2-phenylindole) 

was added and incubated for 20 minutes at room tempera-

ture. After washing with TBS, cells on coverslips were finally 

observed by a fluorescence microscopy (Zeiss International, 

Oberkochen, Germany). 

Results

1. The cytotoxicity of tannic acid on FaDu cell

The cytotoxicity of TA on FaDu cell growth was examined 

by an MTT assay. TA significantly inhibited cell growth dose-

dependently in the range of 0 to 200 μM with 50 µM of IC50. 

Treating cells with 200 µM of TA for 24 hours caused 80% of 

cell death (Fig. 1).

2. Tannic acid induced cell cycle arrest and apoptosis

Flow cytometry was used to examine the cell cycle distribu-

tion under the TA treatment. The analysis on cell cycle revealed 

that under the low concentration of TA (25 µM) cells were sig-

nificantly inhibited in cell cycle progression with 30% of cells 

arrested at G2/M phase. Meanwhile, cell population at sub-G1 

phase was dose-dependently increased indicating that high 

dose of TA induced apoptosis on FaDu cells (Fig. 2). To further 

confirm the changes in cell division and cellular nucleus, the 

effect of TA on cell cycle progression was examined by immu-

nofluorescence imaging. Under the treatment of 25 µM TA for 

24 hours, the number of cells in division process was increased 

with doubled centrosomes and bipolar mitotic spindles while 

at higher doses cells were in apoptosis with nuclei condensed 

Fig. 1. Tannic acid (TA) inhibited the growth of FaDu cells. Cells were 
treated with various concentrations of TA and incubated for 24 hours. MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was 
carried out to determine the cell viability. Vertical bars indicate means and 
standard errors (n = 3).

G0/G1

100

80

60

40

20

C
e
ll

(%
)

Cell cycle

0
S G2/M Sub G1

0

25

50

100

�
�
�

�

M

M

M

M

Fig. 2. Tannic acid  (TA) regulated cell cycle distribution. FaDu cells were 
treated with TA (0, 25, 50, and 100 µM) and incubated for 24 hours. TA 
treated cells were stained with propidium iodide and analyzed by flow cy-
tometry.
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and fragmented (Fig. 3). 

3. �Tannic acid suppressed cell cycle regulatory 

proteins 

The effects of TA were further investigated by Western blot-

ting to elucidate the expression of regulatory proteins in cell 

cycle. As shown in Fig. 4, TA inhibited the expression of cyclins 

and CDKs. Noticeably cyclin D1 was dramatically suppressed 

at low dose (25 µM) condition while the expression of cyclin 

D1 dependent kinase CDK-4 was slightly at 25 µM and gradu-

ally decreased at higher doses condition. Other cyclins (cyclin 

A, B1, and E) and CDKs (CDK-1 and CDK-2) were also down-

0 M�

25 M�

50 M�

100 M�

�-Tubulin DAPI Pericentrin Merge

Fig. 3. Immunofluorescence staining images 
of FaDu cells. After tannic acid treatment for 
24 hours, cells were fixed with paraformalde-
hyde and stained for the following detection: 
α-tubulin for microtubules, DAPI for nuclei 
and pericentrin antibody for centrosomes. The 
yellow arrows indicate the cell at G2/M phase 
and the white arrows the cells in apoptosis 
(×400).
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Fig. 4. Tannic acid (TA) suppressed the expression of cell cycle regulatory 
proteins. The cells were treated with 25, 50, 100 µM of TA for 24 hours and 
Western blotting was carried out as described in Materials and Methods. 
DMSO, dimethyl sulfoxide; CDK, cyclin-dependent kinase.
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Fig 5. Tannic acid (TA) activated caspase-dependent apoptosis (A) and 
phosphorylated both AKT and ERK/MAPK (B). FaDu cells were treated 
with various concentrations of TA for 24 hours and various proteins were 
detected by Western blotting. 
DMSO, dimethyl sulfoxide; PARP, poly (ADP-ribose)polymerase; ERK, 
extracellular signal-regulated kinase; MAPK, mitogen-activated protein ki-
nase.
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regulated dose-dependently.

4. �Tannic acid-induced apoptosis was through 

caspase-dependent pathway

TA-induced apoptosis was further investigated to elucidate 

the underlying molecular mechanism. As shown in Fig. 5A, the 

apoptosis was mediated by caspase-dependent pathway. Un-

der TA treating condition, the expression of procaspase 9 and 

procaspase 3 was dose-dependently decreased in Western 

blotting while the active forms of apoptotic effectors, cleaved 

caspase-3 and caspase-7 as well as cleaved PARP were in-

creased at higher doses of TA. Under the same condition both 

AKT and ERK were highly phosphorylated indicating that TA-

induced apoptosis was mediated through the signaling path-

way of AKT and ERK/MAPK (Fig. 5B). 

Discussion

In this study we investigated the cellular effect of TA on FaDu 

hypopharyngeal squamous cell carcinoma to elucidate TA-

induced apoptosis and its underlying mechanism. TA treatment 

for 24 hours reduced the viability of FaDu cells by arresting cell 

cycle at G2/M phase at low dose (25 µM) and inducing apopto-

sis at higher dose (50 to 100 µM). Immunofluorescence imag-

ing and cell cycle analysis revealed that at low dose condition 

cells were at G2/M phase in cell division but at higher doses 

undergone into apoptosis with nuclei condensed and frag-

mented. The expression of various cell CDK and cyclins were 

reduced under TA treatment. Especially the suppression of 

cyclin D1 and overexpression of cyclin B1 at 25 µM of TA were 

dramatic. Considering that cyclin D1 overexpression has been 

associated with cancer onset and tumor progression [22], the 

strong suppression of cyclin D1 might be the main contributor 

against cell division, consequently arresting cell cycle at G2/

M phase. Other cyclins (cyclin A and B1) and CDKs (CDK-1 

and CDK-2) also contributed to cell cycle arrest at G2/M phase 

since cyclin A/CDK-2 complex which drives cells from S phase 

to G2/M phase, and mitotic cyclin/CDK-1 complex (A/CDK-

1 and cyclin B1/CDK-1) which promotes G2/M phase entry, 

were not affected at the condition of 25 µM of TA (Fig. 4). The 

decreased expression of cyclin E and CDK-2 might be associ-

ated with the poor activity of cyclin E/CDK-2 complex which is 

responsible for G2/M phase transition. Contrarily, at higher dose 

(50 to 100 µM) condition programmed cell death was overtaken 

with rapidly increasing cell population at sub-G1 phase (Fig. 2). 

Sequential activation of caspase 9, caspase 7 and caspase 3 

were confirmed by Western blotting, and the activated forms 

of these proteolytic caspases catalyzed the cleavage of PARP 

generating cleaved PARP (89 kDa), which has the catalytic 

function on DNA fragmentation in nuclear and protein degrada-

tion in cytosol thus leading to programmed cell death. 

Interestingly TA-induced apoptosis was through the up-

regulation of ERK and AKT pathways with dose-dependent 

increase of p-ERK and p-AKT. It is unclear how TA-induced 

apoptosis was mediated through the signaling pathway of 

AKT and ERK/MAPK. ERK/MAPK was known to be associ-

ated with various functions of cell proliferation, differentiation, 

migration, senescence and apoptosis [23,24]. AKT activation 

in response to extracellular stimuli generally promoted cell 

survival, metabolism and proliferation [25,26]. However, there 

have been other reports demonstrating that AKT activation and 

its relocalization into nucleus induce apoptosis when cells were 

treated with antitumor drugs, methotrexate and docetaxel [27]. 

Reactive oxygen species also promoted apoptosis through the 

activation of AKT in prostate cancer cells [28]. 

TA effects on hypopharyngeal cancer cells have been rarely 

reported. The most recent report by Schmidt et al. [29] shows 

TA effects on FaDu cells by using the extract of Osmunda 

regalis root, which contains tannin and other phytochemicals. 

The root extract inhibited the cell proliferation, motility and in-

vasion which were accompanied by various gene modulations 

involved in adhesion and metastasis. However it was unclear 

whether these inhibition effects were attributed by tannin 

itself. From this context, our results provide the convincing 

evidence of anti-tumor effect by TA action on hypopharyngeal 

cancer cells. Whether or not TA has other effects on cell sig-

naling pathway including cell motility remains to be answered 

in future study. Overall our data support that TA may be a 

potential candidate as an alternative for the treatment of hypo-

pharyngeal cancer. 
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