DOI QR코드

DOI QR Code

사이클 선수의 하지근력균형이 무산소성 페달링 기능에 미치는 영향

The Effects of Muscle Balance in Lower Limb on Anaerobic Pedaling Capacity among Elite Cyclists

  • 박현주 (단국대학교 일반대학원 체육학과) ;
  • 김정훈 (단국대학교 스포츠과학대학)
  • Park, Hyun-Ju (General Graduate School, Department of Physical Education, Dankook University) ;
  • Kim, Jung-Hoon (College of Sports Science, Dankook University)
  • 투고 : 2019.03.26
  • 심사 : 2019.06.20
  • 발행 : 2019.06.28

초록

이 연구의 목적은 사이클 선수를 대상으로 슬관절 등속성 근기능의 좌 우측 불균형이 무산소성 페달링 파워 관련 변인에 미치는 영향을 조사하는 것이다. 슬관절 등속성 근력 기준으로 비주측과 주측의 근력균형지수가 매우 균형적인 집단(High Symmetry Group, HSG), 적정수준의 집단(Moderate Symmetry Group, MSG), 불균형이 존재하는 집단(Asymmetry Group, AG)으로 분류하여 페달링 기능을 비교하였다. 그 결과 신근력의 비주측과 주측의 근력 불균형은 페달링 기능의 집단 간 차이점이 없었다. 한편, 굴근력의 비주측과 주측 근력균형지수의 불균형은 무산소성 페달링 파워 관련 변인에서 집단 간 차이점이 미세하게 존재하였지만, 페달링 기능에 부정적인 영향을 미치는 수준은 아닌 것으로 판단된다. 그러므로 좌 우측 근기능이 거의 동일하게 적용되는 사이클 선수에게도 근력 불균형이 존재하였으나, 이러한 불균형이 페달링 기능에 부정적인 영향을 미치지 않는 것으로 판단된다.

The purpose of this study was to investigate the effects of muscle asymmetry of knee joint among elite cyclists on anaerobic pedaling power related capacity. In another word, based on isokinetic strength of Non-Dominant, ND and Dominant, D, side, high, moderate and low ratio of ND to D were classified as High Symmetry Group, Moderate Symmetry Group and Asymmetry Group, respectively. Analysis of muscle asymmetry of extensor's ND and D side might not lead to any difference between the three groups. Based on muscle strength analysis of the flexor's ND and D, there was statistical difference between the groups in ND flexor and in the muscle balance index of the flexor muscle. This result also leads to significant difference in pedaling power functionality, but this effects might not lead to any negative pedaling power. Therefore, among even cyclists who may show almost the same recruitment pattern of ND and D side during pedaling stroke muscle asymmetry could exist but this phenomena might not negatively contribute to the pedaling capacity.

키워드

Table 1. Subjects’ Characteristics among Extensor Muscle Balance Groups

DJTJBT_2019_v17n6_389_t0001.png 이미지

Table 2. Subjects’ Characteristics among Flexor Muscle Balance Groups

DJTJBT_2019_v17n6_389_t0002.png 이미지

Table 3. Isokinetic Muscular Strength of Extensor Measured at 60 degrees/sec

DJTJBT_2019_v17n6_389_t0003.png 이미지

Table 4. Wingate Test Results in Groups of Extensor Muscle Balance Measured at 60 degrees/sec

DJTJBT_2019_v17n6_389_t0004.png 이미지

Table 5. Isokinetic Muscular Strength of Flexor Measured at 60 degrees/sec

DJTJBT_2019_v17n6_389_t0005.png 이미지

Table 6. Wingate Test Results in Groups of Flexor Muscle Balance Measured at 60 degrees/sec

DJTJBT_2019_v17n6_389_t0006.png 이미지

참고문헌

  1. J. L. Croisier. (2004). Muscular imbalance and acute lower extremity muscle injuries in sport. International SportMed Journal, 5(3), 169-176.
  2. F. P. Carpes, C. B. Mota & I. E. Faria. (2010). On the bilateral asymmetry during running and cycling-A review considering leg preference. Physical therapy in sport, 11(4), 136-142. https://doi.org/10.1016/j.ptsp.2010.06.005
  3. P. A. Jones & T. M. Bampouras. (2010). A comparison of isokinetic and functional methods of assessing bilateral strength imbalance. The Journal of Strength & Conditioning Research, 24(6), 1553-1558. https://doi.org/10.1519/JSC.0b013e3181dc4392
  4. C. L. Ardern, T. Pizzari, M. R. Wollin & K. E. Webster. (2015). Hamstrings strength imbalance in professional football (soccer) players in Australia. The Journal of Strength & Conditioning Research, 29(4), 997-1002. https://doi.org/10.1519/JSC.0000000000000747
  5. C. Jacobs, T. L. Uhl, M. Seeley, W. Sterling & L. Goodrich. (2005). Strength and fatigability of the dominant and nondominant hip abductors. Journal of athletic training, 40(3), 203.
  6. Newton, R. U. Newton, A. Gerber, S. Nimphius, J. K. Shim, B. K. Doan, M. Robertson & W. J. Kraemer. (2006). Determination of functional strength imbalance of the lower extremities. The Journal of Strength & Conditioning Research, 20(4), 971-977. https://doi.org/10.1519/00124278-200611000-00039
  7. K. L. Knight. (1980). Strength Imbalance and Knee Injury. The Physician and sportsmedicine, 8(1), 140. https://doi.org/10.1080/00913847.1980.11948551
  8. K. O'shea, P. Kenny, J. Donovan, F. Condon & J. P. McElwain. (2002). Outcomes following quadriceps tendon ruptures. Injury, 33(3), 257-260. https://doi.org/10.1016/S0020-1383(01)00110-3
  9. T. G. Grace, E. R. Sweetser, M. A. Nelson, L. R. Ydens & B. J. Skipper. (1984). Isokinetic muscle imbalance and knee-joint injuries. A prospective blind study. The Journal of bone and joint surgery. American volume, 66(5), 734-740. https://doi.org/10.2106/00004623-198466050-00012
  10. H. Y. Luk, C. Winter, E. O'neill & B. A. Thompson. (2014). Comparison of muscle strength imbalance in powerlifters and jumpers. The Journal of Strength & Conditioning Research, 28(1), 23-27. https://doi.org/10.1519/JSC.0b013e318295d311
  11. A. D. Potts, J. E. Charlton & H. M. Smith. (2002). Bilateral arm power imbalance in swim bench exercise to exhaustion. Journal of sports sciences, 20(12), 975-979. https://doi.org/10.1080/026404102321011733
  12. J. J. Knapik, C. L. Bauman, B. H. Jones, J. M. Harris & L. Vaughan. (1991). Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. The American journal of sports medicine, 19(1), 76-81. https://doi.org/10.1177/036354659101900113
  13. S. Parkin, A. V. Nowicky, O. M. Rutherford & A. H. McGregor. (2001). Do oarsmen have asymmetries in the strength of their back and leg muscles?. Journal of sports sciences, 19(7), 521-526. https://doi.org/10.1080/026404101750238971
  14. M. J. Callaghan, (2005). Lower body problems and injury in cycling. Journal of Bodywork and Movement Therapies, 9(3), 226-236. https://doi.org/10.1016/j.jbmt.2005.01.007
  15. M. P. Schwellnus & E. W. Derman. (2005). Common injuries in cycling: Prevention, diagnosis and management. South African Family Practice, 47(7), 14-19. https://doi.org/10.1080/20786204.2005.10873255
  16. F. Hug, N. A. Turpin, A. Guevel & S. Dorel. (2010). Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies?. Journal of Applied Physiology, 108(6), 1727-1736. https://doi.org/10.1152/japplphysiol.01305.2009
  17. C. Gabbard & S. Hart. (1996). A question of foot dominance. The Journal of general psychology, 123(4), 289-296. https://doi.org/10.1080/00221309.1996.9921281
  18. S. Best, R. Bergin, S. Royer, J. Winters, K. Poploski, N, Heebner ... & S. Lephart. (2018). Knee Extension Strength Asymmetry does not affect Peak Power or Fatigue during the Wingate Test: 1743 Board# 4 May 31 2. Medicine & Science in Sports & Exercise, 50(5S), 406.
  19. R. C. So, J. K. F. Ng & G. Y. Ng. (2005). Muscle recruitment pattern in cycling: a review. Physical therapy in sport, 6(2), 89-96. https://doi.org/10.1016/j.ptsp.2005.02.004
  20. T. W. Boonstra, A. Daffertshofer, Van Ditshuizen, J. C. Van Ditshuizen, M. R. C. Van den Heuvel, C. Hofman, N. W. Willigenburg & P. J. Beek. (2008). Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs. Journal of Electromyography and Kinesiology, 18(5), 717-731. https://doi.org/10.1016/j.jelekin.2007.03.005
  21. R. D. Seidler & D. C. Noll. (2008). Neuroanatomical correlates of motor acquisition and motor transfer. Journal of neurophysiology, 99(4), 1836-1845. https://doi.org/10.1152/jn.01187.2007
  22. E. Kapreli, S. Athanasopoulos, M. apathanasiou, P. Van Hecke, D. Kelekis, R. Peeters & S. Sunaert. (2007). Lower limb sensorimotor network: issues of somatotopy and overlap. Cortex, 43(2), 219-232. https://doi.org/10.1016/S0010-9452(08)70477-5
  23. B. S. Denadai, F. B. D. de Oliveira, S. R. D. A. Camarda, L. Ribeiro & C. C. Greco. (2016). Hamstrings ‐to‐quadriceps strength and size ratios of male professional soccer players with muscle imbalance. Clinical physiology and functional imaging, 36(2), 159-164. https://doi.org/10.1111/cpf.12209
  24. Y. S. Kang & J. H. Kim. (2014). Muscle Asymmetry in Cyclists Based On Bilateral Strength and Muscular Fatigue. The Korea Society Of Sports Science, 23(2), 1247-1256.
  25. J. R. Yoon & S. J. Hae. (2008). A study on functional strength imbalance of the Lower-extremities. Official Journal of the Korea Exercise Science Academy, 17(2), 251-260.
  26. M. Franettovich, J. Hides, M. D. Mendis & H. Littleworth. (2011). Muscle imbalance among elite athletes. British journal of sports medicine, 45(4), 348-349.
  27. S. J. Atkins, I. Bentley, H. T. Hurst, J. K. Sinclair & C. Hesketh. (2016). The presence of bilateral imbalance of the lower limbs in elite youth soccer players of different ages. The Journal of Strength & Conditioning Research, 30(4), 1007-1013. https://doi.org/10.1519/JSC.0b013e3182987044
  28. N. H. Hart, R. U. Newton, J. Weber, T. Spiteri, T. Rantalainen, M. Dobbin & S. Nimphius. (2018). Functional Basis of Asymmetrical Lower-Body Skeletal Morphology in Professional Australian Rules Footballers. Journal of strength and conditioning research.
  29. L. N. Burkett. (1970). Causative factors in hamstring strains. Medicine and science in sports, 2(1), 39-42.
  30. A. A. Sapega. (1990). Muscle performance evaluation in orthopaedic practice. JBJS, 72(10), 1562-1574. https://doi.org/10.2106/00004623-199072100-00023
  31. J. Orchard, J. Marsden, S. Lord & D. Garlick. (1997). Preseason hamstring muscle weakness associated with hamstring muscle injury in Australian footballers. The American Journal of Sports Medicine, 25(1), 81-85. https://doi.org/10.1177/036354659702500116
  32. S. F. Nadler, G. A. Malanga, M. DePrince, T. P. Stitik, & J. H. Feinberg. (2000). The relationship between lower extremity injury, low back pain, and hip muscle strength in male and female collegiate athletes. Clinical Journal of Sport Medicine, 10(2), 89-97. https://doi.org/10.1097/00042752-200004000-00002
  33. K. Bennell, H. Wajswelner, P. Lew, A. Schall-Riaucour, S. Leslie, D. Plant & J. Cirone. (1998). Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers. British journal of sports medicine, 32(4), 309-314. https://doi.org/10.1136/bjsm.32.4.309
  34. R. L. Lieber & J. Friden. (2000). Functional and clinical significance of skeletal muscle architecture. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 23(11), 1647-1666. https://doi.org/10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.0.CO;2-M
  35. Kawakami, Yasuo, Takashi. Abe & Tetsuo. Fukunaga. (1993). Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. Journal of Applied Physiology, 74(6), 2740-2744. https://doi.org/10.1152/jappl.1993.74.6.2740
  36. G. Vernillo, C. Pisoni & G. Thiebat. (2016). Strength asymmetry between front and rear leg in elite snowboard athletes. Clinical Journal of Sport Medicine, 26(1), 83-85. https://doi.org/10.1097/JSM.0000000000000194
  37. G. Vernillo, C. Pisoni, L. M. Sconfienza, G. Thiebat & S. Longo. (2017). Changes in muscle architecture of vastus lateralis muscle after an alpine snowboarding race. The Journal of Strength & Conditioning Research, 31(1), 254-259. https://doi.org/10.1519/JSC.0000000000001469
  38. K. Kubo, H. Kanehisa, Y. Kawakami & T. Fukunaga. (2001). Influences of repetitive muscle contractions with different modes on tendon elasticity in vivo. Journal of applied physiology, 91(1), 277-282. https://doi.org/10.1152/jappl.2001.91.1.277
  39. P. Brancaccio, F. M. Limongelli, A. D'Aponte, M. Narici & N Maffulli. (2008). Changes in skeletal muscle architecture following a cycloergometer test to exhaustion in athletes. Journal of Science and Medicine in Sport, 11(6), 538-541. https://doi.org/10.1016/j.jsams.2007.05.011
  40. R. Csapo, L. M. Alegre & R. Baron. (2011). Time kinetics of acute changes in muscle architecture in response to resistance exercise. Journal of Science and Medicine in Sport, 14(3), 270-274. https://doi.org/10.1016/j.jsams.2011.02.003