DOI QR코드

DOI QR Code

Therapeutic strategies to manage chronic wounds by using biofilm dispersal mechanisms

생물막 분산기작을 이용한 만성창상의 치료전략

  • Kim, Jaisoo (Department of Life Science, Kyonggi University) ;
  • Kim, Min-Ho (Department of Biological Sciences, Kent State University)
  • 김재수 (경기대학교 바이오융합학부 생명과학전공) ;
  • 김민호 (켄트주립대학교 생물학과)
  • Received : 2019.04.04
  • Accepted : 2019.05.09
  • Published : 2019.06.30

Abstract

Most chronic wounds persist in the inflammatory phase during wound healing due to the biofilm. Biofilms are resistant to antibiotics, weakening penetration, resistance to biocides and weakening local immune responses. The biofilm is firmly attached to the surrounding tissues and is very difficult to remove. Therefore, strategies to remove hard biofilms without damaging surrounding tissue are very important. One of possible strategies is dispersal. So many studies have been done to develop new strategies using dispersal mechanisms. In this review paper, especially chemotaxis, phage therapy, polysaccharides, various enzymes (glycosidases, proteases, and deoxyribonucleases), surfactants, dispersion signals, autoinducers, inhibitors were introduced. Combination therapies with other therapies such as antibiotic therapy were also introduced. It is expected that the possibility of treatment of chronic wound infection using the knowledge of the biofilm dispersal mechanisms presented in this paper will be higher.

대부분의 만성창상(chronic wounds)은 생물막으로 인해 상처 치유시 염증단계를 지속시킨다. 생물막은 항생제(antibiotics)에 대한 저항성을 가지며 침투력을 저하시키고 살균제(biocides)에 대한 내성을 지니며 국소면역반응을 약화시킨다. 또한 생물막은 주변의 조직에 단단히 붙어 있어 제거하는 작업이 매우 어렵다. 그러므로 주변 조직을 손상시키지 않으면서 단단한 생물막을 제거하는 전략은 매우 중요하다. 그 중에 하나가 분산기작을 이용한 생물막의 해체이며 지금까지 많은 연구가 수행되어 왔다. 본 고찰논문에서는 특별히 화학주성, 파지요법, 다당류, 다양한 효소(당분해효소, 단백질분해효소, DNA 분해효소), 계면활성제, 분산신호, 자기유도인자, 조절인자, 억제제 등이 소개되었으며 더 나아가 항생제 치료 및 다른 치료와의 병행을 통한 병합요법도 소개되었다. 앞으로 본 논문에서 제시된 생물막의 분산기작의 지식을 이용하여 만성 창상 감염치료의 가능성이 더 높아지길 기대한다.

Keywords

MSMHBQ_2019_v55n2_87_f0001.png 이미지

Fig. 1. The life cycle of biofilm.

MSMHBQ_2019_v55n2_87_f0002.png 이미지

Fig. 2. The steps of biofilm dispersal.

Table 1. List of active dispersal mechanisms that may be useful for wound infection treatments

MSMHBQ_2019_v55n2_87_t0001.png 이미지

References

  1. Alipour M, Suntres ZE, and Omri A. 2009. Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 64, 317-325. https://doi.org/10.1093/jac/dkp165
  2. Alkawash MA, Soothill JS, and Schiller NL. 2006. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114, 131-138. https://doi.org/10.1111/j.1600-0463.2006.apm_356.x
  3. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, and Tolker-Nielsen T. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59, 1114-1128. https://doi.org/10.1111/j.1365-2958.2005.05008.x
  4. Allison DG, Ruiz B, SanJose C, Jaspe A, and Gilbert P. 1998. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol. Lett. 167, 179-184. https://doi.org/10.1111/j.1574-6968.1998.tb13225.x
  5. An S, Wu J, and Zhang LH. 2010. Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl. Environ. Microbiol. 76, 8160-8173. https://doi.org/10.1128/AEM.01233-10
  6. Applegate DH and Bryers JD. 1991. Effects of carbon and oxygen limitations and calcium concentrations on biofilm removal process. Biotechnol. Bioeng. 37, 17-25. https://doi.org/10.1002/bit.260370105
  7. Arias-Moliz MT, Baca P, Ordonez-Becerra S, Gonzalez-Rodriguez MP, and Ferrer-Luque CM. 2012. Eradication of enterococci biofilms by lactic acid alone and combined with chlorhexidine and cetrimide. Med. Oral Patol. Oral Cir. Bucal 17, e902-e906.
  8. Attinger C and Wolcott R. 2012. Clinically addressing biofilm in chronic wounds. Adv. Wound Care 1, 127-132. https://doi.org/10.1089/wound.2011.0333
  9. Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, and Webb JS. 2006. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 188, 7344-7353. https://doi.org/10.1128/JB.00779-06
  10. Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, and Kjelleberg S. 2009. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol. 191, 7333-7342. https://doi.org/10.1128/JB.00975-09
  11. Belyansky I, Tsirline VB, Martin TR, Klima DA, Heath J, Lincourt AE, Satishkumar R, Vertegel A, and Heniford BT. 2011a. The addition of lysostaphin dramatically improves survival, protects porcine biomesh from infection, and improves graft tensile shear strength. J. Surg. Res. 171, 409-415. https://doi.org/10.1016/j.jss.2011.04.014
  12. Belyansky I, Tsirline VB, Montero PN, Satishkumar R, Martin TR, Lincourt AE, Shipp JI, Vertegel A, and Heniford BT. 2011b. Lysostaphin-coated mesh prevents staphylococcal infection and significantly improves survival in a contaminated surgical field. Am. Surg. 77, 1025-1031. https://doi.org/10.1177/000313481107700822
  13. Bleyer AJ, Mason L, Russell G, Raad II, and Sherertz RJ. 2005. A randomized, controlled trial of a new vascular catheter flush solution (minocycline-EDTA) in temporary hemodialysis access. Infect. Control Hosp. Epidemiol. 26, 520-524. https://doi.org/10.1086/502578
  14. Boles BR and Horswill AR. 2008. agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4, e1000052. https://doi.org/10.1371/journal.ppat.1000052
  15. Boles BR, Thoendel M, and Singh PK. 2005. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol. Microbiol. 57, 1210-1223. https://doi.org/10.1111/j.1365-2958.2005.04743.x
  16. Bookstaver PB, Williamson JC, Tucker BK, Raad II, and Sherertz RJ. 2009. Activity of novel antibiotic lock solutions in a model against isolates of catheter-related bloodstream infections. Ann. Pharmacother. 43, 210-219. https://doi.org/10.1345/aph.1L145
  17. Boyd A and Chakrabarty AM. 1994. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60, 2355-2359. https://doi.org/10.1128/AEM.60.7.2355-2359.1994
  18. Briandet R, Hery JM, and Bellon-Fontaine MN. 2001. Determination of the van der Waals, electron donor and electron acceptor surface tension components of static Gram-positive microbial biofilms. Colloids Surf. B Biointerfaces 21, 299-310. https://doi.org/10.1016/S0927-7765(00)00213-7
  19. Burrowes B, Harper DR, Anderson J, McConville M, and Enright MC. 2011. Bacteriophage therapy: Potential uses in the control of antibiotic-resistant pathogens. Expert Rev. Anti. Infect. Ther. 9, 775-785. https://doi.org/10.1586/eri.11.90
  20. Burton E, Gawande PV, Yakandawala N, LoVetri K, Zhanel GG, Romeo T, Friesen AD, and Madhyastha S. 2006. Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens. Antimicrob. Agents Chemother. 50, 1835-1840. https://doi.org/10.1128/AAC.50.5.1835-1840.2006
  21. Carlson HK, Vance RE, and Marletta MA. 2010. H-NOX regulation of c-di-GMP metabolism and biofilm formation in Legionella pneumophila. Mol. Microbiol. 77, 930-942. https://doi.org/10.1111/j.1365-2958.2010.07259.x
  22. Cava F, Lam H, de Pedro MA, and Waldor MK. 2011. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell. Mol. Life Sci. 68, 817-831. https://doi.org/10.1007/s00018-010-0571-8
  23. Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, and Jabbouri S. 2007. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl. Microbiol. Biotechnol. 75, 125-132. https://doi.org/10.1007/s00253-006-0790-y
  24. Chatzinikolaou I, Zipf TF, Hanna H, Umphrey J, Roberts WM, Sherertz R, Hachem R, and Raad I. 2003. Minocyclineethylenediaminetetraacetate lock solution for the prevention of implantable port infections in children with cancer. Clin. Infect. Dis. 36, 116-119. https://doi.org/10.1086/344952
  25. Chavez de Paz LE, Lemos JA, Wickstrom C, and Sedgley CM. 2012. Role of (p)ppGpp in biofilm formation by Enterococcus faecalis. Appl. Environ. Microbiol. 78, 1627-1630. https://doi.org/10.1128/AEM.07036-11
  26. Chibeu A, Lingohr EJ, Masson L, Manges A, Harel J, Ackermann HW, Kropinski AM, and Boerlin P. 2012. Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms. Viruses 4, 471-487. https://doi.org/10.3390/v4040471
  27. Choi YC and Morgenroth E. 2003. Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Water Sci. Technol. 47, 69-76. https://doi.org/10.2166/wst.2003.0284
  28. Costerton JW, Montanaro L, and Arciola CR. 2007. Bacterial communications in implant infections: A target for an intelligence war. Int. J. Artif. Organs 30, 757-763. https://doi.org/10.1177/039139880703000903
  29. Coulter LB, McLean RJC, Rohde RE, and Aron GM. 2014. Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses 6, 3778-3786. https://doi.org/10.3390/v6103778
  30. Craigen B, Dashiff A, and Kadouri DE. 2011. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol. J. 5, 21-31. https://doi.org/10.2174/1874285801105010021
  31. Crossman L and Dow JM. 2004. Biofilm formation and dispersal in Xanthomonas campestris. Microbes Infect. 6, 623-629. https://doi.org/10.1016/j.micinf.2004.01.013
  32. Cusumano CK, Pinkner J, Han Z, Greene SE, Ford BA, Crowley JR, Henderson JP, Janetka JW, and Hultgren SJ. 2011. Treatment and prevention of UTI with orally active mannoside FimH inhibitors. Sci. Transl. Med. 3, 109ra115. https://doi.org/10.1126/scitranslmed.3003021
  33. Davey ME, Caiazza NC, and O'Toole GA. 2003. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 185, 1027-1036. https://doi.org/10.1128/JB.185.3.1027-1036.2003
  34. Davies DG and Marques CN. 2009. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 191, 1393-1403. https://doi.org/10.1128/JB.01214-08
  35. de la Fuente-Nunez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, and Hancock RE. 2012. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob. Agents Chmother. 56, 2696-2704. https://doi.org/10.1128/AAC.00064-12
  36. Delaquis PJ, Caldwell DE, Lawrence JR, and McCurdy AR. 1989. Detachment of Pseudomonas fluorescens from biofilms on glass surfaces in response to nutrient stress. Microb. Ecol. 18, 199-210. https://doi.org/10.1007/BF02075808
  37. Delille A, Quiles F, and Humbert F. 2007. In situ monitoring of the nascent Pseudomonas fluorescens biofilm response to variations in the dissolved organic carbon level in low-nutrient water by attenuated total reflectance-Fourier transform infrared spectroscopy. Appl. Environ. Microbiol. 73, 5782-5788. https://doi.org/10.1128/AEM.00838-07
  38. Dong YH, Zhang XF, An SW, Xu JL, and Zhang LH. 2008. A novel two-component system BqsS-BqsR modulates quorum sensingdependent biofilm decay in Pseudomonas aeruginosa. Commun. Integr. Biol. 1, 88-96. https://doi.org/10.4161/cib.1.1.6717
  39. Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 9, 881-890. https://doi.org/10.3201/eid0907.020653
  40. Dow JM, Crossman L, Findlay K, He YQ, Feng JX, and Tang JL. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signalling and is required for full virulence in plants. Proc. Natl. Acad. Sci. USA 100, 10995-11000. https://doi.org/10.1073/pnas.1833360100
  41. Dubin G. 2002. Extracellular proteases of Staphylococcus spp. Biol. Chem. 383, 1075-1086. https://doi.org/10.1515/BC.2002.116
  42. Eckhart L, Fischer H, Barken KB, Tolker-Nielsen T, and Tschachler E. 2007. DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus. Br. J. Dermatol. 156, 1342-1345. https://doi.org/10.1111/j.1365-2133.2007.07886.x
  43. Feely T, Copley A, and Bleyer AJ. 2007. Catheter lock solutions to prevent bloodstream infections in high-risk hemodialysis patients. Am. J. Nephrol. 27, 24-29. https://doi.org/10.1159/000098541
  44. Fey PD. 2010. Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? Curr. Opin. Microbiol. 13, 610-615. https://doi.org/10.1016/j.mib.2010.09.007
  45. Freeman R, Geier H, Weigel KM, Do J, Ford TE, and Cangelosi GA. 2006. Roles for cell wall glycopeptidolipids in surface adherence and planktonic dispersal of Mycobacterium avium. Appl. Environ. Microbiol. 72, 7554-7558. https://doi.org/10.1128/AEM.01633-06
  46. Fuqua C and Greenberg EP. 2002. Listening in on bacteria: acylhomoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3, 685-695. https://doi.org/10.1038/nrm907
  47. Gerstel U, Kolb A, and Romling U. 2006. Regulatory components at the csgD promoter-additional roles for OmpR and integration host factor and role of the 5 untranslated region. FEMS Microbiol. Lett. 261, 109-117. https://doi.org/10.1111/j.1574-6968.2006.00332.x
  48. Gerstel U, Park C, and Romling U. 2003. Complex regulation of csgD promoter activity by global regulatory proteins. Mol. Microbiol. 49, 639-654. https://doi.org/10.1046/j.1365-2958.2003.03594.x
  49. Giacometti A, Cirioni O, Gov Y, Ghiselli R, Del Prete MS, Mocchegiani F, Saba V, Orlando F, Scalise G, Balaban N, et al. 2003. RNA III inhibiting peptide inhibits in vivo biofilm formation by drugresistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47, 1979-1983. https://doi.org/10.1128/AAC.47.6.1979-1983.2003
  50. Gjermansen M, Nilsson M, Yang L, and Tolker-Nielsen T. 2010. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol. Microbiol. 75, 815-826. https://doi.org/10.1111/j.1365-2958.2009.06793.x
  51. Gjermansen M, Ragas P, Sternberg C, Molin S, and Tolker-Nielsen T. 2005. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol. 7, 894-904. https://doi.org/10.1111/j.1462-2920.2005.00775.x
  52. Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Deziel E, Greenberg EP, Poole K, and Banin E. 2010. Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J. Bacteriol. 192, 2973-2980. https://doi.org/10.1128/JB.01601-09
  53. Guiton PS, Cusumano CK, Kline KA, Dodson KW, Han Z, Janetka JW, Henderson JP, Caparon MG, and Hultgren SJ. 2012. Combinatiorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob. Agents Chemother. 56, 4738-4745. https://doi.org/10.1128/AAC.00447-12
  54. Guiton PS, Hung CS, Kline KA, Roth R, Kau AL, Hayes E, Heuser J, Dodson KW, Caparon MG, and Hultgren SJ. 2009. Contribution of autolysin and Sortase A during Enterococcus faecalis DNAdependent biofilm development. Infect. Immun. 77, 3626-3638. https://doi.org/10.1128/IAI.00219-09
  55. Hall-Stoodley L, Nistico L, Sambanthamoorthy K, Dice B, Nguyen D, Mershon WJ, Johnson C, Hu FZ, Stoodley P, Ehrlich GD, et al. 2008. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol. 8, 173. https://doi.org/10.1186/1471-2180-8-173
  56. Hammar M, Arnqvist A, Bian Z, Olsen A, and Normark S. 1995. Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol. Microbiol. 18, 661-670. https://doi.org/10.1111/j.1365-2958.1995.mmi_18040661.x
  57. He H, Cooper JN, Mishra A, and Raskin DM. 2012. Stringent response regulation of biofilm formation in Vibrio cholerae. J. Bacteriol. 194, 2962-2972. https://doi.org/10.1128/JB.00014-12
  58. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eber L, Molin S, Hoiby N, et al. 2002. Inhibition of quorum sensing in P. aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148, 87-102. https://doi.org/10.1099/00221287-148-1-87
  59. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, et al. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22, 3803-3815. https://doi.org/10.1093/emboj/cdg366
  60. Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, and Losick R. 2011. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J. Bacteriol. 193, 5616-5622. https://doi.org/10.1128/JB.05534-11
  61. Hoiby N, Bjarnsholt T, Givskov M, Molin S, and Ciofu O. 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35, 322-332. https://doi.org/10.1016/j.ijantimicag.2009.12.011
  62. Hong W, Mason K, Jurcisek J, Novotny L, Bakaletz LO, and Swords WE. 2007. Phosphorylcholine decreases early inflammation and promotes the establishment of stable biofilm communities of nontypeable Haemophilus influenzae strain 86-028NP in a chinchilla model of otitis media. Infect. Immun. 75, 958-965. https://doi.org/10.1128/IAI.01691-06
  63. Hughes KA, Sutherland IW, Clark J, and Jones MV. 1998a. Bacteriophage and associated polysaccharide depolymerases-Novel tools for study of bacterial biofilms. J. Appl. Microbiol. 85, 583-590. https://doi.org/10.1046/j.1365-2672.1998.853541.x
  64. Hughes KA, Sutherland IW, and Jones MV. 1998b. Biofilm susceptibility to bacteriophage attack: The role of phage-borne polysaccharide depolymerase. Microbiology 144, 3039-3047. https://doi.org/10.1099/00221287-144-11-3039
  65. Hunt SM, Werner EM, Huang B, Hamilton MA, and Stewart PS. 2004. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl. Environ. Microbiol. 70, 7418-7425. https://doi.org/10.1128/AEM.70.12.7418-7425.2004
  66. Itoh Y, Wang X, Hinnebusch BJ, Preston 3rd JF, and Romeo T. 2005. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J. Bacteriol. 187, 382-387. https://doi.org/10.1128/JB.187.1.382-387.2005
  67. Izano EA, Amarante MA, Kher WB, and Kaplan JB. 2008. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl. Environ. Microbiol. 74, 470-476. https://doi.org/10.1128/AEM.02073-07
  68. Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, and Romeo T. 2002. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J. Bacteriol. 184, 290-301. https://doi.org/10.1128/JB.184.1.290-301.2002
  69. James GA, Korber DR, Caldwell DE, and Costerton JW. 1995. Digital image analysis of growth and starvation responses of a surfacecolonizing Acinetobacter sp. J. Bacteriol. 177, 907-915. https://doi.org/10.1128/jb.177.4.907-915.1995
  70. Jubelin G, Vianney A, Beloin C, Ghigo JM, Lazzaroni JC, Lejeune P, and Dorel C. 2005. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J. Bacteriol. 187, 2038-2049. https://doi.org/10.1128/JB.187.6.2038-2049.2005
  71. Kaplan JB. 2010. Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res. 89, 205-218. https://doi.org/10.1177/0022034509359403
  72. Kaplan JB, Lovetri K, Cardona ST, Madhyastha S, Sadovskaya I, Jabbouri S, and Izano EA. 2012. Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci. J. Antibiot. 65, 73-77. https://doi.org/10.1038/ja.2011.113
  73. Karatan E and Watnick P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev. 73, 310-347. https://doi.org/10.1128/MMBR.00041-08
  74. Kiedrowski MR, Kavanaugh JS, Malone CL, Mootz JM, Voyich JM, Smeltzer MS., Bayles KW, and Horswill AR. 2011. Nuclease modulates biofilm formation in community-associated methicillinresistant Staphylococcus aureus. PLoS One 6, e26714. https://doi.org/10.1371/journal.pone.0026714
  75. Kim MS, Kim YD, Hong SS, Park K, Ko KS, and Myung H. 2015. Phage-encoded colanic acid-degrading enzyme permits lytic phage infection of a capsule-forming resistant mutant Escherichia coli strain. Appl. Environ. Microbiol. 81, 900-909. https://doi.org/10.1128/AEM.02606-14
  76. Kiran S, Sharma P, Harjai K, and Capalash N. 2011. Enzymatic quorum quenching increases antibiotic susceptibility of multidrug resistant Pseudomonas aeruginosa. Iran. J. Microbiol. 3, 1-12.
  77. Kolodkin-Gal I, Cao S, Chai L, Bottcher T, Kolter R, Clardy J, and Losick R. 2012. A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149, 684-692. https://doi.org/10.1016/j.cell.2012.02.055
  78. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, and Losick R. 2010. D-amino acids trigger biofilm disassembly. Science 328, 627-629. https://doi.org/10.1126/science.1188628
  79. Kostakioti M, Hadjifrangiskou M, and Hultgren SJ. 2013. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 3, a010306.
  80. Lauderdale KJ, Boles BR, Cheung AL, and Horswill AR. 2009. Interconnections between sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect. Immun. 77, 1623-1635. https://doi.org/10.1128/IAI.01036-08
  81. Lauderdale KJ, Malone CL, Boles BR, Morcuende J, and Horswill AR. 2010. Biofilm dispersal of community-associated methicillinresistant Staphylococcus aureus on orthopedic implant material. J. Orthop. Res. 28, 55-61. https://doi.org/10.1002/jor.20943
  82. Laursen JB and Nielsen J. 2004. Phenazine natural products: biosynthesis, synthetic analogues and biological activity. Chem. Rev. 104, 1663-1686. https://doi.org/10.1021/cr020473j
  83. Lawrence JR, Scharf B, Packroff G, and Neu TR. 2002. Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microb. Ecol. 44, 199-207. https://doi.org/10.1007/s00248-001-1064-y
  84. Lee KJ, Jung YC, Park SJ, and Lee KH. 2018. Role of heat shock proteases in quorum-sensing-mediated regulation of biofilm formation by Vibrio species. mBio 9, e02086-17.
  85. Lemos JA, Brown TA, and Burne RA. 2004. Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans. Infect. Immun. 72, 1431-1440. https://doi.org/10.1128/IAI.72.3.1431-1440.2004
  86. Lewis K. 2005. Persister cells and the riddle of biofilm survival. Biochemistry (Moscow) 70, 267-274. https://doi.org/10.1007/s10541-005-0111-6
  87. Lewis K. 2008. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 322, 107-131.
  88. Lister JL and Horswill AR. 2014. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 4, 178.
  89. Lu TK and Collins JJ. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104, 11197-11202. https://doi.org/10.1073/pnas.0704624104
  90. Ma Q, Yang Z, Pu M, Peti W, and Wood TK. 2011. Engineering a novel c-di-GMP-binding protein for biofilm dispersal. Environ. Microbiol. 13, 631-642. https://doi.org/10.1111/j.1462-2920.2010.02368.x
  91. Mack D, Becker P, Chatterjee I, Dobinsky S, Knobloch JK, Peters G, Rohde H, and Herrmann M. 2004. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: Functional molecules, regulatory circuits, and adaptive responses. Int. J. Med. Microbiol. 294, 203-212. https://doi.org/10.1016/j.ijmm.2004.06.015
  92. Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, and Givskov M. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148, 1119-1127. https://doi.org/10.1099/00221287-148-4-1119
  93. Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsang LH, Smeltzer MS, Horswill AR, and Bayles KW. 2009. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4, e5822. https://doi.org/10.1371/journal.pone.0005822
  94. Marshall JC. 1988. Adhesion and growth of bacteria at surfaces in oligotrophic habitats. Can. J. Microbiol. 34, 503-506. https://doi.org/10.1139/m88-086
  95. Martins M, Henriques M, Lopez-Ribot JL, and Oliveira R. 2012. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55, 80-85. https://doi.org/10.1111/j.1439-0507.2011.02047.x
  96. Monte J, Abreu AC, Borges A, Simoes LC, and Simoes M. 2014. Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens 3, 473-498. https://doi.org/10.3390/pathogens3020473
  97. Morgan R, Kohn S, Hwang SH, Hassett DJ, and Sauer K. 2006. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J. Bacteriol. 188, 7335-7343. https://doi.org/10.1128/JB.00599-06
  98. Musk DJ, Banko DA, and Hergenrother PJ. 2005. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol. 12, 789-796. https://doi.org/10.1016/j.chembiol.2005.05.007
  99. Neu TR. 1996. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev. 60, 151-166. https://doi.org/10.1128/MMBR.60.1.151-166.1996
  100. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, et al. 2011. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982-986. https://doi.org/10.1126/science.1211037
  101. O'Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, and Bassler BL. 2013. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl. Acad. Sci. USA 110, 17981-17986. https://doi.org/10.1073/pnas.1316981110
  102. Orgaz B, Lobete MM, Puga CH, and Sanjose C. 2011. Effectiveness of chitosan against mature biofilms formed by food related bacteria. Int. J. Mol. Sci. 12, 817-828. https://doi.org/10.3390/ijms12010817
  103. Ott CM, Day DF, Koenig DW, and Pierson DL. 2001. The release of alginate lyase from growing Pseudomonas syringae pathovar phaseolicola. Curr. Microbiol. 42, 78-81. https://doi.org/10.1007/s002840010182
  104. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, and Hancock RE. 2008. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 76, 4176-4182. https://doi.org/10.1128/IAI.00318-08
  105. Park S, Park YH, Lee CR, Kim YR, and Seok YJ. 2016. Glucose induces delocalization of a flagellar biosynthesis protein from the flagellated pole. Mol. Microbiol. 101, 795-808. https://doi.org/10.1111/mmi.13424
  106. Pei R and Lamas-Samanamud GR. 2014. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl. Environ. Microbiol. 80, 5340-5348. https://doi.org/10.1128/AEM.01434-14
  107. Peschel A and Otto M. 2013. Phenol-soluble modulins and staphylococcal infection. Nat. Rev. Microbiol. 11, 667-673. https://doi.org/10.1038/nrmicro3110
  108. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, and Iglewski BH. 1999. Quinolone signaling in the cellto-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 11229-11234. https://doi.org/10.1073/pnas.96.20.11229
  109. Pratt LA and Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285-293. https://doi.org/10.1046/j.1365-2958.1998.01061.x
  110. Preston LA, Wong TY, Bender CL, and Schiller NL. 2000. Characterization of alginate lyase from Pseudomonas syringae pv. syringae. J. Bacteriol. 182, 6268-6271. https://doi.org/10.1128/JB.182.21.6268-6271.2000
  111. Purevdorj-Gage B, Costerton WJ, and Stoodley P. 2005. Phenotypic differentiation and seeding dispersal in non-mucoid Pseudomonas aeruginosa biofilms. Microbiology 151, 1569-1576. https://doi.org/10.1099/mic.0.27536-0
  112. Puskas A, Greenberg EP, Kaplan S, and Schaefer AL. 1997. A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol. 179, 7530-7537. https://doi.org/10.1128/jb.179.23.7530-7537.1997
  113. Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, and Qu D. 2007. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153, 2083-2092. https://doi.org/10.1099/mic.0.2007/006031-0
  114. Qin Z, Yang L, Qu D, Molin S, and Tolker-Nielsen T. 2009. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth and disrupt established biofilms by Staphylococcus epidermidis. Microbiology 155, 2148-2156. https://doi.org/10.1099/mic.0.028001-0
  115. Raad I, Buzaid A, Rhyne J, Hachem R, Darouiche R, Safar H, Albitar M, and Sherertz RJ. 1997. Minocycline and ethylenediaminetetraacetate for the prevention of recurrent vascular catheter infections. Clin. Infect. Dis. 25, 149-151. https://doi.org/10.1086/514518
  116. Raad I, Chatzinikolaou I, Chaiban G, Hanna H, Hachem R, Dvorak T, Cook G, and Costerton W. 2003. In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob. Agents Chemother. 47, 3580-3585. https://doi.org/10.1128/AAC.47.11.3580-3585.2003
  117. Raetz CRH. 1996. Escherichia coli and Salmonella typhimurium: Cellular and molecular biology, pp. 1035-1063. In Neidhardt FC, Curtis III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE. (eds.), American Society for Microbiology, Washington, D.C., USA.
  118. Reffuveille F, de la Fuente-Nunez C, Mansour S, and Hancock RE. 2014. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob. Agents Chemother. 58, 5363-5371. https://doi.org/10.1128/AAC.03163-14
  119. Rendueles O, Kaplan JB, and Ghigo JM. 2013. Antibiofilm polysaccharides. Environ. Microbiol. 15, 334-346. https://doi.org/10.1111/j.1462-2920.2012.02810.x
  120. Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, and Kjelleberg S. 2005. Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J. Bacteriol. 187, 3477-3485. https://doi.org/10.1128/JB.187.10.3477-3485.2005
  121. Romeo T. 2006. When the party is over: a signal for dispersal of Pseudomonas aeruginosa biofilms. J. Bacteriol. 188, 7325-7327. https://doi.org/10.1128/JB.01317-06
  122. Romling U, Bian Z, Hammar M, Sierralta W, and Normark S. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180, 722-731. https://doi.org/10.1128/JB.180.3.722-731.1998
  123. Romling U, Galperin MY, and Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77, 1-52. https://doi.org/10.1128/MMBR.00043-12
  124. Romling U, Rohde M, Olsen A, Normark S, and Reinkoster J. 2000. AgfD, the checkpoint of multicellular and aggregative behavior in Salmonella typhimurium regulates at least two independent pathways. Mol. Microbiol. 36, 10-23. https://doi.org/10.1046/j.1365-2958.2000.01822.x
  125. Rumbaugh KP. 2007. Convergence of hormones and autoinducers at the host/pathogen interface. Anal. Bioanal. Chem. 387, 425-435. https://doi.org/10.1007/s00216-006-0694-9
  126. Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, and Gilbert P. 2004. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186, 7312-7326. https://doi.org/10.1128/JB.186.21.7312-7326.2004
  127. Sawyer LK and Hermanowicz SW. 1998. Detachment of biofilm bacteria due to variations in nutrient supply. Water Sci. Technol. 37, 211-214. https://doi.org/10.2166/wst.1998.0624
  128. Schaber JA, Triffo WJ, Suh SJ, Oliver JW, Hastert MC, Griswold JA, Auer M, Hamood AN, and Rumbaugh KP. 2007. Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect. Immun. 75, 3715-3721. https://doi.org/10.1128/IAI.00586-07
  129. Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA, and Kjelleberg S. 2009. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 4, e5513. https://doi.org/10.1371/journal.pone.0005513
  130. Schmidt I, Steenbakkers PJM, op den Camp HJM, Schmidt K, and Jetten MSM. 2004. Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J. Bacteriol. 186, 2781-2788. https://doi.org/10.1128/JB.186.9.2781-2788.2004
  131. Schooling S, Charaf UK, Allison DG, and Gilbert P. 2004. A role for rhamnolipid in biofilm dispersion. Biofilms 1, 91-99. https://doi.org/10.1017/S147905050400119X
  132. Secinti KD, Ozalp H, Attar A, and Sargon MF. 2011. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. J. Clin. Neurosci. 18, 391-395. https://doi.org/10.1016/j.jocn.2010.06.022
  133. Shak S, Capon DJ, Hellmiss R, Marsters SA, and Baker CL. 1990. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc. Natl. Acad. Sci. USA 87, 9188-9192. https://doi.org/10.1073/pnas.87.23.9188
  134. Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, and Gabrani R. 2016. Escherichia coli biofilm: development and therapeutic strategies. J. Appl. Microbiol. 121, 309-319. https://doi.org/10.1111/jam.13078
  135. Shaw L, Golonka E, Potempa J, and Foster SJ. 2004. The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150, 217-228. https://doi.org/10.1099/mic.0.26634-0
  136. Shiner EK, Terentyev D, Bryan A, Sennoune S, Martinez-Zaguilan R, Li G, Gyorke S, Williams SC, and Rumbaugh KP. 2006. Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling. Cell Microbiol. 8, 1601-1610. https://doi.org/10.1111/j.1462-5822.2006.00734.x
  137. Shukla SK and Rao TS. 2013. Dispersal of Bap-mediated Staphylococcus aureus biofilm by proteinase K. J. Antibiot. (Tokyo) 66, 55-60. https://doi.org/10.1038/ja.2012.98
  138. Soberon-Chavez G, Lepinen F, and Deziel E. 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68, 718-725. https://doi.org/10.1007/s00253-005-0150-3
  139. Sugimoto S, Iwamoto T, Takada K, Okuda K, Tajima A, Iwase T, and Mizunoe Y. 2013. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J. Bacteriol. 195, 1645-1655. https://doi.org/10.1128/JB.01672-12
  140. Sugisaki K, Hanawa T, Yonezawa H, Osaki T, Fukutomi T, Kawakami H, Yamamoto T, and Kamiya S. 2013. Role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertussis. Microbiology 159, 1379-1389. https://doi.org/10.1099/mic.0.066597-0
  141. Sun IF, Lee SS, Chiu CC, Lin SD, and Lai CS. 2008. Hyperbaric oxygen therapy with topical negative pressure: an alternative treatment for the refractory sternal wound infection. J. Card. Surg. 23, 677-680. https://doi.org/10.1111/j.1540-8191.2008.00689.x
  142. Sutherland IW, Hughes KA, Skillman LC, and Tait K. 2004. The interaction of phage and biofilms. FEMS Microbiol. Lett. 232, 1-6. https://doi.org/10.1016/S0378-1097(04)00041-2
  143. Takahashi H, Suda T, Tanaka Y, and Kimura B. 2010. Cellular hydrophobicity of Listeria monocytogenes involves initial attachment and biofilm formation on the surface of polyvinyl chloride. Lett. Appl. Microbiol. 50, 618-625. https://doi.org/10.1111/j.1472-765X.2010.02842.x
  144. Tan SY, Chua S, Chen Y, Rice SA, Kjelleberg S, Nielsen TE, Yang L, and Givskov M. 2013. Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database. Antimicrob. Agents Chemother. 57, 5629-5641. https://doi.org/10.1128/AAC.00955-13
  145. Tetz GV, Artemenko NK, and Tetz VV. 2009. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob. Agents Chemother. 53, 1204-1209. https://doi.org/10.1128/AAC.00471-08
  146. Thormann KM, Saville RM, Shukla S, and Spormann AM. 2005. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J. Bacteriol. 187, 1014-1021. https://doi.org/10.1128/JB.187.3.1014-1021.2005
  147. Valle J, Da Re S, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, and Ghigo JM. 2006. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc. Natl. Acad. Sci. USA 103, 12558-12563. https://doi.org/10.1073/pnas.0605399103
  148. VanDevanter DR and Van Dalfsen JM. 2005. How much do Pseudomonas biofilms contribute to symptoms of pulmonary exacerbation in cystic fibrosis? Pediatr. Pulmonol. 39, 504-506. https://doi.org/10.1002/ppul.20220
  149. Vogt SL, Green C, Stevens KM, Day B, Erickson DL, Woods DE, and Storey DG. 2011. The stringent response is essential for Pseudomonas aeruginosa virulence in the rat lung agar bead and Drosophila melanogaster feeding models of infection. Infect. Immun. 79, 4094-4104. https://doi.org/10.1128/IAI.00193-11
  150. Walencka E, Sadowska B, Roz alska S, Hryniewicz W, and Rozalska B. 2005. Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication. Pol. J. Microbiol. 54, 191-200.
  151. Wexselblatt E, Oppenheimer-Shaanan Y, Kaspy I, London N, Schueler-Furman O, Yavin E, Glaser G, Katzhendler J, and Ben-Yehuda S. 2012. Relacin, a novel antibacterial agent targeting the stringent response. PLoS Pathog. 8, e1002925. https://doi.org/10.1371/journal.ppat.1002925
  152. Wilson S, Hamilton MA, Hamilton GC, Schumann MR, and Stoodley P. 2004. Statistical quantification of detachment rates and size distributions of cell clumps from wild-type (PAO1) and cell signaling mutant (JP1) Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 70, 5847-5852. https://doi.org/10.1128/AEM.70.10.5847-5852.2004
  153. Wolcott RD and Rhoads DD. 2008. A study of biofilm-based wound management in subjects with critical limb ischemia. J. Wound Care 17, 145-155. https://doi.org/10.12968/jowc.2008.17.4.28835
  154. Wong TY, Preston LA, and Schiller NL. 2000. Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev. Microbiol. 54, 289-340. https://doi.org/10.1146/annurev.micro.54.1.289
  155. Wrangstadh M, Conway PL, and Kjelleberg S. 1989. The role of an extracellular polysaccharide produced by the marine Pseudomonas sp. S9 in cellular detachment during starvation. Can. J. Microbiol. 35, 309-312. https://doi.org/10.1139/m89-046
  156. Xun LY, Mah RA, and Boone DR. 1990. Isolation and characterization of disaggregatase from Methanosarcina mazei LYC. Appl. Environ. Microbiol. 56, 3693-3698. https://doi.org/10.1128/AEM.56.12.3693-3698.1990
  157. Yarwood JM, Bartels DJ, Volper EM, and Greenberg EP. 2004. Quorum sensing in Staphylococcus aureus biofilms. J. Bacteriol. 186, 1838-1850. https://doi.org/10.1128/JB.186.6.1838-1850.2004
  158. Ymele-Leki P and Ross JM. 2007. Erosion from Staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen. Appl. Environ. Microbiol. 73, 1834-1841. https://doi.org/10.1128/AEM.01319-06
  159. Zhu Y, Weiss EC, Otto M, Fey PD, Smeltzer MS, and Somerville GA. 2007. Staphylococcus aureus biofilm metabolism and the influence of arginine on polysaccharide intercellular adhesin synthesis, biofilm formation, and pathogenesis. Infect. Immun. 75, 4219-4226. https://doi.org/10.1128/IAI.00509-07
  160. Zielinska AK, Beenken KE, Mrak LN, Spencer HJ, Post GR, Skinner RA, Tackett AR, Horswill AR, and Smeltzer MS. 2012. sarAmediated repression of protease production plays a key role in the pathogenesis of Staphylococcus aureus USA300 isolates. Mol. Microbiol. 86, 1183-1196. https://doi.org/10.1111/mmi.12048
  161. Zogaj X, Nimtz M, Rohde M, Bokranz W, and Romling U. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39, 1452-1463. https://doi.org/10.1046/j.1365-2958.2001.02337.x