Fig. 1. Schematic diagram of reactor
Fig. 2. Methane production with different substrates
Fig. 3. Methane production rate with different substrates
Fig. 4. Taxonomic composition of microorganisms in reactors 다. 이러한 결과는 생물전기화학적 기술이 메탄을 생
References
- L, Appels, J. Baeyens, J. Degreve, and R. Dewil, "Principles and potential of the anaerobic digestion of waste-activated sludge", Prog. Energy and Combust. Sci., Vol. 38, No. 6, 2008, pp. 755-781, doi: https://doi.org/10.1016/j.pecs.2008.06.002.
- Y. Dang, D. E. Holmes, Z. Zhao, T. L. Woodard, Y. Zhang, D. Sun, L. Y. Wang, K. P. Nevin, and D. R. Lovely, "Enhancing anaerobic digestion of complex organic waste with carbon based conductive materials", Bioresour. Technol., Vol. 220, 2016, pp. 516-522, doi: https://doi.org/10.1016/j.biortech.2016.08.114.
- H. Carrere, C. Dumas, A. Battimelli, D. J. Bastone, J. P. Delgenes, J. P. Steyer, and I. Ferrer, "Pretreatment methods to improve sludge anaerobic degradability: A review", J. Hazard. Mater., Vol. 183, No. 1-3, 2010, pp. 1-15, doi: https://doi.org/10.1016/j.jhazmat.2010.06.129.
- Y. Zhang and I. Angelidaki, "Microbial electrolysis cells turning to be versatile to be versatile technology: Recent advances and future challenges", Water Res., Vol. 56, 2014, pp. 11-25, doi: https://doi.org/10.1016/j.watres.2014.02.031.
- B. E. Logan, D. Call, S. Cheng, H. V. M. Hamelers, T. H. J. A. Sleutels, A. W. Jeremiase, and R. A. Rozendal, "Microbial electrolysis cells for high yield hydrogen gas production from orgnaic matter", Environ. Sci. Technol., Vol. 42, No. 23, 2008, pp. 8630-8640, doi: https://doi.org/10.1021/es801553z.
- R. A. Rozendal, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, and C. J. N. Buisman, "Priciples and perspectives of hydrogen production through biocatalyzed electrolysis", Int. J. Hydrogen Energy, Vol. 31, No. 12, 2006, pp. 1632-1640, doi: https://doi.org/10.1016/j.ijhydene.2005.12.006.
- S. Gajaraj, Y. Huang, P. Zheng, and Z. Hu, "Methane production improvement and associated methanogenic assemblages in bioelectrochemically assisted anaerobic digestion", Biochem. Eng., Vol. 117, 2017, pp. 105-112, doi: https://doi.org/10.1016/j.bej.2016.11.003.
- Y. Feng, Y. Zhang, S. Chen, and X. Quan, "Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode", Chem. Eng. J., Vol. 259, 2015, pp. 787-794, doi: https://doi.org/10.1016/j.cej.2014.08.048.
- Z. Guo, W. Liu, C. Yang, L, Gao, S. Thangvel, L. Wang, Z. He, W. Cai, and A. Wang, "Computational and experimental analysis of orgnaic degrdation positively regulated by bioelectrochemistry in an anaerobic bioreactor system", Water Res., Vol. 125, 2017, pp. 170-179, doi: https://doi.org/10.1016/j.watres.2017.08.039.
- T. Bo, Z. Zhu, L. Zhang, Y. Tao, X. He, D. Li, and Z. Yan, "A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor", Vol. 45, 2014, pp. 67-70, doi: https://doi.org/10.1016/j.elecom.2014.05.026.
- Y. Li, Y. Zhang, Y. Liu, Z. Zhao, Z. Zhao, S. Liu, H. Zhao, and X. Quan, "Enhancement of anaerobic methanogenesis at a short hydraulic retention time via bioelectrochemical e nrichment of hydrogenotrophic methanogens", Bioresour. Technol., Vol. 218, 2016, pp. 505-511, doi: https://doi.org/10.1016/j.biortech.2016.06.112.
- J. Park, B. Lee, D. Tian, and H. Jun, "Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell", Bioresour. Technol., Vol. 247, 2018, pp. 226-233, doi: https://doi.org/10.1016/j.biortech.2017.09.021.
- B. Lee, J. G. Park, W. B. Shin, D. J. Tian, and H. B. Jun, "Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells", Bioresour. Technol., Vol. 234, 2017, pp. 273-280, doi: https://doi.org/10.1016/j.biortech.2017.02.022.
- Y. Gao, D. Sun, Y. Dang, Y. Lei, J. Ji, T. Lv, R. Bian, Z. Xiao, L. Yan, and D. E. Holmes, "Enhancing biomethanogenic treatment of fresh incineration leachate using single chamvered microbial electrolysis cells", Bioresour. Technol., Vol. 231, 2017, pp. 129-137, doi: https://doi.org/10.1016/j.biortech.2017.02.024.
- Z. Zhao, Y. Zhang, X. Quan, and H. Zhao, "Evaluation on direct interspecies electro transfer in anaerobic sludge digestion of microbial electrolysis cell", Bioresour. Technol., Vol. 200, 2016, pp. 235-244, doi: https://doi.org/10.1016/j.biortech.2015.10.021.
- Q. Liu, Z. J. Ren, C. Huang, B. Liu, N. Ren, and D. Xing, "Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells", Biotechnol. Biofuels, Vol. 9, No. 1, p. 162, doi: https://doi.org/10.1186/s13068-016-0579-x.
- S. K. Han and C. Y. Lee, "Evaluation of power density in microbial fuel cells using expanded graphite/carbon nanotube (CNT) composite cathode and CNT anode", Journal of Korean Society of Water & Wastewater, Vol. 27, No. 4, 2013, pp. 503-509, doi: https://doi.org/10.11001/jksww.2013.27.4.503.
- American Public Health Association (APHA), "Standard Methods for the examination of waster and wastewater", APHA, USA, 2005.
- S. K. Khanl, "Anaerobic biotechnology for bioenergy production: Priciples and Applications", Wiley-Balckwell, USA, 2008.
- A. E. Schauer-Gimenez, D. H. Ziomer, J. S. Maki, and C. A. Struble, "Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure", Water Res., Vol. 44, No. 12, 2010, pp. 3555-3564, doi: https://doi.org/10.1016/j.watres.2010.03.037.