DOI QR코드

DOI QR Code

Effect of Substrates on the Microbial Communities in a Microbial Electrolysis Cell and Anaerobic Digestion Coupled System

기질에 따른 미생물 전해 전지-혐기성 소화의 미생물 군집 특성

  • LEE, CHAE-YOUNG (Department of Civil Eng. and Institute of River Environmental Technology, The University of Suwon) ;
  • HAN, SUN-KEE (Department of Environmental Health, Korea National Open University)
  • 이채영 (수원대학교 토목공학과.하천환경기술연구소) ;
  • 한선기 (한국방송통신대학교 환경보건학과)
  • Received : 2019.05.29
  • Accepted : 2019.06.30
  • Published : 2019.06.30

Abstract

This study was conducted to evaluate the microbial communities in coupled system of a microbial electrolysis cell and an anaerobic digestion. Glucose, butyric acid, propionic acid and acetic acid were used as substrates. The maximum methane production and methane production rate of propionic acid respectively were $327.9{\pm}6.7mL\;CH_4/g\;COD$ and $28.3{\pm}3.1mL\;CH_4/g\;COD{\cdot}d$, which were higher than others. Microbial communities' analyses indicated that acetoclastic methangens were predominant in all systems. But the proportion of hydrogenotrophic methanogens was higher in the system using propionic acid as a substrate when compared to others. In coupled system of a microbial electrolysis cell and anaerobic digestion, the methane production was higher as the distribution of hydrogen, which was generated by substrate degradation, and proportion of hydrogenotrophic methanogens was higher.

Keywords

SSONB2_2019_v30n3_269_f0001.png 이미지

Fig. 1. Schematic diagram of reactor

SSONB2_2019_v30n3_269_f0002.png 이미지

Fig. 2. Methane production with different substrates

SSONB2_2019_v30n3_269_f0003.png 이미지

Fig. 3. Methane production rate with different substrates

SSONB2_2019_v30n3_269_f0004.png 이미지

Fig. 4. Taxonomic composition of microorganisms in reactors 다. 이러한 결과는 생물전기화학적 기술이 메탄을 생

References

  1. L, Appels, J. Baeyens, J. Degreve, and R. Dewil, "Principles and potential of the anaerobic digestion of waste-activated sludge", Prog. Energy and Combust. Sci., Vol. 38, No. 6, 2008, pp. 755-781, doi: https://doi.org/10.1016/j.pecs.2008.06.002.
  2. Y. Dang, D. E. Holmes, Z. Zhao, T. L. Woodard, Y. Zhang, D. Sun, L. Y. Wang, K. P. Nevin, and D. R. Lovely, "Enhancing anaerobic digestion of complex organic waste with carbon based conductive materials", Bioresour. Technol., Vol. 220, 2016, pp. 516-522, doi: https://doi.org/10.1016/j.biortech.2016.08.114.
  3. H. Carrere, C. Dumas, A. Battimelli, D. J. Bastone, J. P. Delgenes, J. P. Steyer, and I. Ferrer, "Pretreatment methods to improve sludge anaerobic degradability: A review", J. Hazard. Mater., Vol. 183, No. 1-3, 2010, pp. 1-15, doi: https://doi.org/10.1016/j.jhazmat.2010.06.129.
  4. Y. Zhang and I. Angelidaki, "Microbial electrolysis cells turning to be versatile to be versatile technology: Recent advances and future challenges", Water Res., Vol. 56, 2014, pp. 11-25, doi: https://doi.org/10.1016/j.watres.2014.02.031.
  5. B. E. Logan, D. Call, S. Cheng, H. V. M. Hamelers, T. H. J. A. Sleutels, A. W. Jeremiase, and R. A. Rozendal, "Microbial electrolysis cells for high yield hydrogen gas production from orgnaic matter", Environ. Sci. Technol., Vol. 42, No. 23, 2008, pp. 8630-8640, doi: https://doi.org/10.1021/es801553z.
  6. R. A. Rozendal, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, and C. J. N. Buisman, "Priciples and perspectives of hydrogen production through biocatalyzed electrolysis", Int. J. Hydrogen Energy, Vol. 31, No. 12, 2006, pp. 1632-1640, doi: https://doi.org/10.1016/j.ijhydene.2005.12.006.
  7. S. Gajaraj, Y. Huang, P. Zheng, and Z. Hu, "Methane production improvement and associated methanogenic assemblages in bioelectrochemically assisted anaerobic digestion", Biochem. Eng., Vol. 117, 2017, pp. 105-112, doi: https://doi.org/10.1016/j.bej.2016.11.003.
  8. Y. Feng, Y. Zhang, S. Chen, and X. Quan, "Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode", Chem. Eng. J., Vol. 259, 2015, pp. 787-794, doi: https://doi.org/10.1016/j.cej.2014.08.048.
  9. Z. Guo, W. Liu, C. Yang, L, Gao, S. Thangvel, L. Wang, Z. He, W. Cai, and A. Wang, "Computational and experimental analysis of orgnaic degrdation positively regulated by bioelectrochemistry in an anaerobic bioreactor system", Water Res., Vol. 125, 2017, pp. 170-179, doi: https://doi.org/10.1016/j.watres.2017.08.039.
  10. T. Bo, Z. Zhu, L. Zhang, Y. Tao, X. He, D. Li, and Z. Yan, "A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor", Vol. 45, 2014, pp. 67-70, doi: https://doi.org/10.1016/j.elecom.2014.05.026.
  11. Y. Li, Y. Zhang, Y. Liu, Z. Zhao, Z. Zhao, S. Liu, H. Zhao, and X. Quan, "Enhancement of anaerobic methanogenesis at a short hydraulic retention time via bioelectrochemical e nrichment of hydrogenotrophic methanogens", Bioresour. Technol., Vol. 218, 2016, pp. 505-511, doi: https://doi.org/10.1016/j.biortech.2016.06.112.
  12. J. Park, B. Lee, D. Tian, and H. Jun, "Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell", Bioresour. Technol., Vol. 247, 2018, pp. 226-233, doi: https://doi.org/10.1016/j.biortech.2017.09.021.
  13. B. Lee, J. G. Park, W. B. Shin, D. J. Tian, and H. B. Jun, "Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells", Bioresour. Technol., Vol. 234, 2017, pp. 273-280, doi: https://doi.org/10.1016/j.biortech.2017.02.022.
  14. Y. Gao, D. Sun, Y. Dang, Y. Lei, J. Ji, T. Lv, R. Bian, Z. Xiao, L. Yan, and D. E. Holmes, "Enhancing biomethanogenic treatment of fresh incineration leachate using single chamvered microbial electrolysis cells", Bioresour. Technol., Vol. 231, 2017, pp. 129-137, doi: https://doi.org/10.1016/j.biortech.2017.02.024.
  15. Z. Zhao, Y. Zhang, X. Quan, and H. Zhao, "Evaluation on direct interspecies electro transfer in anaerobic sludge digestion of microbial electrolysis cell", Bioresour. Technol., Vol. 200, 2016, pp. 235-244, doi: https://doi.org/10.1016/j.biortech.2015.10.021.
  16. Q. Liu, Z. J. Ren, C. Huang, B. Liu, N. Ren, and D. Xing, "Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells", Biotechnol. Biofuels, Vol. 9, No. 1, p. 162, doi: https://doi.org/10.1186/s13068-016-0579-x.
  17. S. K. Han and C. Y. Lee, "Evaluation of power density in microbial fuel cells using expanded graphite/carbon nanotube (CNT) composite cathode and CNT anode", Journal of Korean Society of Water & Wastewater, Vol. 27, No. 4, 2013, pp. 503-509, doi: https://doi.org/10.11001/jksww.2013.27.4.503.
  18. American Public Health Association (APHA), "Standard Methods for the examination of waster and wastewater", APHA, USA, 2005.
  19. S. K. Khanl, "Anaerobic biotechnology for bioenergy production: Priciples and Applications", Wiley-Balckwell, USA, 2008.
  20. A. E. Schauer-Gimenez, D. H. Ziomer, J. S. Maki, and C. A. Struble, "Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure", Water Res., Vol. 44, No. 12, 2010, pp. 3555-3564, doi: https://doi.org/10.1016/j.watres.2010.03.037.