DOI QR코드

DOI QR Code

A Study on the Vibration Characteristics of Attitude Maneuvering of Satellite

위성의 자세기동에 따른 진동특성에 관한 연구

  • Pyeon, Bong-Do (School of Aerospace and Mechanical Engineering, Graduate School at Korea Aerospace University) ;
  • Bae, Jae-Sung (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Jong-Hyuk (School of Aerospace and Mechanical Engineering, Graduate School at Korea Aerospace University) ;
  • Park, Jung-Sun (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 편봉도 (한국항공대학교 항공우주 및 기계공학과 대학원) ;
  • 배재성 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김종혁 (한국항공대학교 항공우주 및 기계공학과 대학원) ;
  • 박정선 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2018.12.15
  • Accepted : 2019.03.31
  • Published : 2019.06.30

Abstract

The design requirements of modern satellites vary depending on the purpose of operation. Like conventional medium and large-scale satellites, small satellites which operate on low orbit may also serve military purposes. As a result, there is increased demand for high-resolution photos and videos and multi-target observation becomes important. The most important design parameter for multi-target observation is the satellites' maneuverability. For increased maneuverability, the miniaturization is required to increase the stiffness of the satellite as this decreases the mass moment of inertia of the satellite. In the case of a solar panel having relatively low stiffness compared to the satellites' body, vibrations are generated when the attitude maneuver is performed, which greatly influences the image acquisition. For verification of such vibrational characteristics, the satellites is modeled as a reduced model, and experimental zig for simulating attitude maneuver is introduced. A rigidity simulator for simulating the stiffness of the satellite is also proposed. Additionally, the objective of the experimental method is to simulate the maneuvering angle of the satellite based on the winding length of the wire using a step motor, and to experimentally verify the vibration characteristics of the satellite body and the solar panel generated during the maneuvering test.

현대의 위성들의 설계요구조건은 운용되는 목적에 따라 다양해진다. 기존 중/대형 위성과는 달리 저궤도에서 운용되는 소형위성의 경우 군사적인 목적을 나타내기도 한다. 그렇기 때문에 고해상도의 사진 및 영상 수요가 증가하며 다표적 관측이 중요하게 된다. 이에 다표적 관측을 하기 위해서 위성의 기동성은 중요한 설계변수이다. 기동성이 증가하기 위해서 소형화가 되면 전체 질량관성모멘트가 감소하기 때문에 위성의 강성을 높여야한다. 본체에 비해서 강성이 낮은 태양전지판의 경우 진동이 발생하기 때문에 영상획득에 큰 영향을 미친다. 이러한 진동특성을 확인하기 위하여 본 연구에서는 위성을 축소모델로 제작하여 자세기동을 모사하기 위한 실험 치구를 도입하였고, 위성의 강성을 모사하기 위한 모사장치를 제시하였다. 또한 실험방식은 스텝모터를 이용하여 와이어의 감는 길이에 따라 위성의 기동각을 모사하였으며, 기동실험 시 발생되는 위성의 본체 및 태양전지판에 대하여 진동특성을 실험적으로 검증하고자 한다.

Keywords

OJSSBW_2019_v13n3_23_f0001.png 이미지

Fig. 1 Configuration of high agility a satellite

OJSSBW_2019_v13n3_23_f0002.png 이미지

Fig. 2 Deformation according to the force of a beam

OJSSBW_2019_v13n3_23_f0003.png 이미지

Fig. 3 Conceptual design of hinge-torsional spring

OJSSBW_2019_v13n3_23_f0004.png 이미지

Fig. 4 Conceptual design of the attitude maneuvering tester

OJSSBW_2019_v13n3_23_f0005.png 이미지

Fig. 5 The First Mode of FE Model

OJSSBW_2019_v13n3_23_f0006.png 이미지

Fig. 6 The Second Mode of FE Model

OJSSBW_2019_v13n3_23_f0007.png 이미지

Fig. 7 The Third Mode of FE model

OJSSBW_2019_v13n3_23_f0008.png 이미지

Fig. 8 Schematic Diagram of the Experimental Setup

OJSSBW_2019_v13n3_23_f0009.png 이미지

Fig. 9 Input Maneuvering Profile

OJSSBW_2019_v13n3_23_f0010.png 이미지

Fig. 10 Experiment Setup for Vibration Test of the Satellite Structure Model

OJSSBW_2019_v13n3_23_f0011.png 이미지

Fig. 11 Frequency Response Function of the Satellite’s Body

OJSSBW_2019_v13n3_23_f0012.png 이미지

Fig. 12 Frequency Response Function of the Body and Panel 1

OJSSBW_2019_v13n3_23_f0013.png 이미지

Fig. 13 Frequency Response Function of the Body, Panel 1 and Panel 3

OJSSBW_2019_v13n3_23_f0014.png 이미지

Fig. 14 Time-Acceleration Response of each panel

OJSSBW_2019_v13n3_23_f0015.png 이미지

Fig. 15 Frequency Response Function of the solar panels

Table 1. Specification of scale down satellite model

OJSSBW_2019_v13n3_23_t0001.png 이미지

Table 2. Requirements of attitude maneuvering

OJSSBW_2019_v13n3_23_t0002.png 이미지

Table. 4 Comparison of FEM Analysis and Experimental Results

OJSSBW_2019_v13n3_23_t0003.png 이미지

Table. 5 Experimental Results with Symmetrical panel

OJSSBW_2019_v13n3_23_t0004.png 이미지

References

  1. Y. H. Kim, K. H. Kang, H. D. Kim, J. S. Park, "A Study on Analysis of Dynamic Characteristics of a High-Agility Satellite including Flexibility of a Solar Panel," Journal of Aerospace System Engineering, Vol. 1, No. 2, pp. 21-26, 2013.
  2. Herbert J. Kramer, Arthur P. Cracknell, "An Overview of small Satellites in Remote Sensing," International Journal of Remote Sensing, Vol. 29, No. 15, pp. 4285-4337, 2008. https://doi.org/10.1080/01431160801914952
  3. Thomas P. Sarafin and Wiley J. Larson, "Spacecraft Structures and Mechanisms From Concept to Launch," Space Technology Library, 1995.
  4. K. W. Kim, H. J. Kim, H. Y. Moon, J. H. Lee, I. M. Jin, H. S. Choi, Y. H. Song and S. Y. Kwon, "Solar Array Trade-off Study for Earth Observation Satellite", The Korea Society for Aeronautical & Space Sciences Proceeding, pp.614-617, 2005.
  5. H. H. Lee, H.D. Kim and J. S. Park, "Optimal Design of a High-Agility Satellite Solar Array Module with Genetic Algorithm," The Korea Society for Aeronautical & Space Sciences Proceeding, pp. 620-625, 2011.
  6. Y. W. Park, J. Y. Han, H. C. Bang, B. K. Park, "A Study on Ground Verification TESTBED for Three Axis Attitude Control of Satellites - Part I. Development Study", Journal of The Korean Society for Aeronautical and Space Science, Vol.27, No. 5, pp113-121, 1999
  7. J. Y. Han, Y. W. Park, H. C. Bang, "Attitude Control of Spacecraft using 3 Axis Attitude Control Ground Testbed - Part II. Experimental study", The Korean Society For Aeronautical and space Sciences Proceedings, pp568-572, 1999
  8. Y. W. Park, J. Y. Han, H. C. Bang, B. K, M. K. Nam, Y. S. Kim, "Spacecraft Attitude Control Ground Experiment Study Using Single Axis Rotational Testbed", The Korean Society For Aeronautical and space Sciences Proceedings, pp403-407, 1997
  9. G. Y. Park, D. O. Lee, J. S. Yoon, J. H. Han, "Analytical & Experimental Study on Microvibration Effects of Satellite", Transactions of the Korean Society for Noise and Vibration Engineering, Vol.24 ,No.1, pp5-13 https://doi.org/10.5050/KSNVE.2014.24.1.005
  10. Meissner, D. M, 2009, "A three degrees of freedom test-bed for nanosatellite and Cubesat attitude dynamics, determination, and control" NAVAL POSTGRADUATE SCHOOL MONTEREY CA.
  11. Veres, S., Lincoln, N., & Gabriel, S, 2007, "Testbed for satellite formation flying under ground conditions," In Control Conference (ECC), 2007 European (pp. 4009-4015), IEEE.
  12. Oda, M., Sawada, H., Yoshii, M., Goto, N., Inaba, N., Suzuki, S.,Hagiwara, Y, "Measurement of Satellite Solar Array Panel Vibrations Caused by Thermal Snap and Gas Jet Thruster Firing," INTECH Open Access Publisher, 2011
  13. B. D. Pyeon, J. S. Bae, J. H. Kim and Jung-Sun, Park, "A Study on the Vibration Characteristics of Solar Panel Using Attitude Maneuver of Satellite," Proceedings of Asian Joint Symposium on Aerospace Engineering, Oct 31-Nov 3 2018.