그림 1. 산업용 6축 로봇팔 Fig. 1. Industrial six-axis robot arm
그림 2. 큰 잡음 데이터(Outlier) 제거 Fig. 2. Remove outlier
그림 3. Median 필터 적용 및 리샘플링 Fig. 3. Applying median filters and resampling
그림 4. 공분산 행렬 Fig. 4. Covariance matrix
그림 5. 산업용 로봇팔의 작동원리 Fig. 5. Operation principle of industrial robot arm
그림 6. (5)번 축 전류-각도 그래프 Fig. 6. Axis 5 current-angle graph
그림 7. LSTM 모델 구조 Fig. 7. Structure of LSTM
그림 9. Seq2Seq 모델의 전류-각도 변환 학습 Fig. 9. Seq2Seq model learning current-to-angle conversion
그림 10. 로봇 상태별 이상 정도 비교 Fig. 10. Comparison of abnormal degree for each state of robot
그림 11. 성능 평가 방법론 Fig. 11. Performance evaluation methodology
그림 12. 혼동 행렬 및 정확도 Fig. 12. Confusion matrix and accuracy
그림 8. Seq2Seq 모델 구조 Fig. 8. Structure of Seq2Seq
표 1. 데이터 구성 Table. 1. Data organization
표 2. (5)번 축 결함 조건 Table. 2. Axis 5 defect condition
표 3. 데이터 샘플 수 Table. 3. Number of data samples
표 4. 데이터셋 구성 Table. 4. Dataset configuration
표 5. 그레인저 인과관계 검정 결과 Table. 5. Result of granger causality test
표 6. 실험 결과 Table. 6. Experiment result
참고문헌
- Lee J., Y. Kim, "A Hybrid Malfunction Diagnostic System using Rules and Cases", Journal of Korea Expert System, vol.4, no.1, pp.115-131, 1998.
- Choi G., G. Kim, "Building battery deterioration prediction model using real field data", Journal of Intelligence and Information Systems, vol.24, no.2, pp.243-264, 2018. https://doi.org/10.13088/JIIS.2018.24.2.243
- Lee J., J. Kang, "Performance Improvement of Malfunction Diagnostic System by Developing Case-based Reasoning Systems for Individual Clusters", Proceedings of Spring, the Korea Inteligent Information System Society Conference, pp.427-434, 2000.
- Zhao R., R. Yan, J. Wang, K. Mao, "Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks", Sensors, vol.17, no.2, 273, 2017. https://doi.org/10.3390/s17020273
- Jeong H., S. Woo, S. Kim, S. Park, H. Kim, S. Lee, "Deep Learning Based Diagnostics of Orbit Patterns in Rotating Machinery", Annual Conference of the Prognostics and Health Management Society, vol.7, 2016.
- Kim Y., J. Park, J. Ha, B. Yoon, J. Park, "Robust Fault Detection Method of an Industrial Robot under Various Operating Conditions", Proceedings of Spring, Korean Society of Mechanical Engineers Conference, pp.1536-1539, 2016.
- Lee J., C. Park, G. Ahn, M. Yoon, B. Yoon, "Current Signal Characteristic Frequency-Based Motor Fault Diagnosis for Collaborative Robot", Proceedings of Korean Society of Mechanical Engineers Conference, pp.1600-1602, 2018.
- Qiao G., B. A. Weiss, "Quick health assessment for industrial robot health degradation and thesupporting advanced sensing development", Journal of Manufacturing Systems, vol.48, pp.51-59, 2018. https://doi.org/10.1016/j.jmsy.2018.04.004
- Jaber A., R. Bicker, "Fault Diagnosis of Industrial Robot Bearings Based on Discrete Wavelet Transform and Artificial Neural Network", Insight - Non-Destructive Testing and Condition Monitoring, vol.58, no.4, pp.179-186, 2016. https://doi.org/10.1784/insi.2016.58.4.179
- Granger C. "Testing for causality: A personal viewpoint", Journal of Economic Dynamics and Control, vol.2, pp.329-352, 1980. https://doi.org/10.1016/0165-1889(80)90069-X
- Hochreiter S., J. Schmidhuber, "Long short term memory", Journal of Neural Computation, vol.9, no.8, pp.1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
- Sutskever I., O. Vinyals, Q. V.Le, "Sequence to Sequence Learning with Neural Networks", Technical report, arXiv preprint arXiv:1409.3215, 2014.