DOI QR코드

DOI QR Code

Characterization of Dental Resin Cement Containing Graphene Oxide

  • Kim, Duck-Hyun (Department of Optometry & Vision Science, Catholic University of Daegu) ;
  • Seok, Jae-Wuk (Department of Optometry & Vision Science, Catholic University of Daegu) ;
  • Sung, A-Young (Department of Optometry & Vision Science, Catholic University of Daegu)
  • 투고 : 2019.05.21
  • 심사 : 2019.06.22
  • 발행 : 2019.06.30

초록

In dental resin cement studies, viscosity is also an important factor in the adhesion of tooth defects and implants. This study used BisGMA and HPMA as the main ingredients, triethylene glycol dimethacrylate (TEGDMA) as a diluent, and benzoyl peroxide (BPO) as a photoinitiator. The physical properties of graphene oxide used as an additive for functionality were evaluated, and its use as a dental resin cement material was investigated.The rupture strength has the tendency to increase along with the increase of the ratio of graphene oxide that was added, which seemed to reflect the effect of the high strength property of graphene oxide. The flexural strength also has the tendency to increase when about 0.5% of graphene oxide was added the same as the increase of rupture strength.When graphene oxide was added, according to viscosity use, the utilization as high-quality dental resin cements will increase.

키워드

Table 2. Photopolymerization of the samples

GCOGBD_2019_v12n2_29_f0001.png 이미지

GCOGBD_2019_v12n2_29_f0002.png 이미지

Fig. 1. Photopolymerization of the samples

GCOGBD_2019_v12n2_29_f0003.png 이미지

Fig. 2. Viscosity of the samples

GCOGBD_2019_v12n2_29_f0004.png 이미지

Fig. 3. Rupture strength of the samples

GCOGBD_2019_v12n2_29_f0005.png 이미지

Fig. 4. Photopolymerization of the samples (A: R1 group; B: R2 group)

GCOGBD_2019_v12n2_29_f0006.png 이미지

Fig. 5. Viscosity of the samples

GCOGBD_2019_v12n2_29_f0007.png 이미지

Fig. 6. SEM images of the samples (A: R1-G4; B: R2-G4)

GCOGBD_2019_v12n2_29_f0008.png 이미지

Fig. 7. Rupture strength of the samples(A: R1 group; B: R2 group)

Table 1. Percent compositions of the samples (unit: %)

GCOGBD_2019_v12n2_29_t0001.png 이미지

Table 3. Percent compositions of the samples (unit: %)

GCOGBD_2019_v12n2_29_t0002.png 이미지

Table 4. Flexural strength test result summary of R1-G4 sample

GCOGBD_2019_v12n2_29_t0003.png 이미지

Table 5. Flexural strength test result summary of R2-G4 sample

GCOGBD_2019_v12n2_29_t0004.png 이미지

참고문헌

  1. Y. Zhang, J. W. Tan, K. L. Stormer, and P. Kim. Nature, 438, pp. 201-204, 2005. https://doi.org/10.1038/nature04235
  2. A. K. Geim, K. S. Novoselov. Nat Mater, 6, pp. 183-91, 2007. https://doi.org/10.1038/nmat1849
  3. H. Bi, F. Huang, J. Liang, X. Xie and M. Jiang, Adv. Mater., 23, pp. 3202-3206, 2011. https://doi.org/10.1002/adma.201100645
  4. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Nature, 457, pp. 706-710, 2009. https://doi.org/10.1038/nature07719
  5. Y. Lu, B. R. Goldsmith, N. J. Kybert and A. T. C. Johnson, Appl. Phys. Lett., 97, pp. 083-107, 2010.
  6. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud Homme and L. C. Brinson, Nature Nanotechnology, 3, pp. 327-331, 2008. https://doi.org/10.1038/nnano.2008.96
  7. M. J. Lee and A. Y. Sung, Journal of Nanoscience and Nanotechnology, 18(10), pp. 6978-6982, 2018. https://doi.org/10.1166/jnn.2018.15487
  8. R. L. Bowen, Washington, DC: U.S. Patent and Trademark Office. U.S. Patent No. 3,066, p. 112, 1962.
  9. R. L. Bowen, Washington, DC: U.S. Patent and Trademark Office, U.S. Patent No. 3,194,784 (1965)
  10. R. W. Phillips, Skinner's science of dental materials. W. B. Saunders Company, xii+ 682, $26{\times}18$ cm, illustrated, 1973.
  11. I. E. Ruyter, Posterior composite resin dental restorative materials, pp. 109-135, 1985.
  12. A. Peutzfeldt, European Journal of Oral Sciences, 105(2), pp. 97-116, 1997. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x
  13. E. Asmussen, Acta Odontologica Scandinavica, 33(3), pp. 129-134, 1975. https://doi.org/10.3109/00016357509026353
  14. I. E. Ruyter and I. J. Sjoevik, Acta Odontologica Scandinavica, 39(3), pp. 133-146, 1981. https://doi.org/10.3109/00016358109162272
  15. H. Vankerckhoven, P. Lambrechts, M. Van Beylen, and G. Vanherle, Journal of Dental Research, 60(12), pp. 1957-1965, 1981. https://doi.org/10.1177/00220345810600120601
  16. I. E. Ruyter, & H. Oysaed, Journal of Biomedical Materials Research, 21(1), pp. 11-23, 1987. https://doi.org/10.1002/jbm.820210107
  17. J. Mc Murry, Fundamentals of Organic Chemistry. Monterey, CA. Brooks. 1986.
  18. G. F. Cowperthwaite, J. J. Foy, & M. A. Malloy, In Biomedical and Dental Applications of Polymers Springer, Boston, MA. pp. 379-385, 1981.
  19. E. Asmussen, Acta Odontologica Scandinavica, 33(6), pp.337-344, 1975. https://doi.org/10.3109/00016357509004638
  20. M. A. Cattani-Lorente, C. Godin, and J. M. Meyer, Dental Materials, 9(1), pp. 57-62, 1993. https://doi.org/10.1016/0109-5641(93)90107-2
  21. S. N. White, Z. Yu, S. N. White, and Z. Yu, International Journal of Prosthodontics, 6(4), 1993.