FIGURE 1. Location of study area
FIGURE 2. Schematic methodology for Infection Tree of Pine wilt disease
FIGURE 3. Process of masking
FIGURE 4. Selection process of scale and shape/color and compactness/smoothness
FIGURE 5. OCB_ITPWD region
FIGURE 6. Comparison of ageclass and DBH class
FIGURE 7. Comparison of elevation and Accessibillity with the forest road
FIGURE 8. Hotspot analysis of OCB_ITPWD
TABLE 1. Selection of optimized segmentation parameters on level
TABLE 2. Error Matrix based on TTA Mask
참고문헌
- Baatz, M., U. Benz., S. Dehghani., M. Heynen., A. Holtje., P. Hofmann., I. Lingenfelder., M. Mimler., M. Sohlbach., M. Weber and G. Willhauck. 2004. eCognition Professional: User Guide 4, Munich:Definiens-Imaging.
- Bagstad, K.J., D.J. Semmens., Z.H. Ancona and B.C. Sherrouse. 2017. Evaluating alternative methods for biophysical and cultural ecosystem services hotspot mapping in natural resource planning. Landscape Ecology 32(1):77-97. https://doi.org/10.1007/s10980-016-0430-6
- Futai, K. 2003. Role of asymptomatic carrier trees in epidemic spread of pine wilt disease. Journal of Forest Research 8(4):253-260. https://doi.org/10.1007/s10310-003-0034-2
- Harris, N.L., E.Goldman., C.Gabris., J.Nordling., S.Minnemeyer., S.Ansari., M.Lippmann., L.Bennett., M.Raad., M.Hansen and P.Potapov. 2017. Using spatial statistics to identify emerging hot spots of forest loss. Environmental Research Letters 12(2):1-13.
- Hellesen, T. and L. Matikainen. 2013. Thomas Hellesen Leena An Object-Based Approach for Mapping Shrub and Tree Cover on Grassland Habitats by Use of LiDAR and CIR Orthoimages. Remote Sensing 2013(5):558-583. https://doi.org/10.3390/rs5020558
- Hong. G.Y. 2017. A Extraction and Accuracy Assessment of Dead Tree Using UAV Image. Ph.M. Thesis, Univ. of Seoul, Seoul, Korea. pp.63-64.
- James, R., N. Tisserat and T. Todd. 2006. Prevention of Pine Wilt of Scots Pine (Pinus sylvestris) with Systemic Abamectin Injections. Arboriculture & Urban Forestry 32(5):195-201.
- Jeong, H.S. 2015. Studies on the Damage Analysis and Effective Control System of Pine Wilt Disease in Korea. Ph.D. Thesis, Univ. of Sangji, Wonju, Korea. pp.1-7.
- Johnson, B.A., R. Tateishi and N.T. Hoan. 2013. A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees International Journal of Remote Sensing 34(20):6969-6982. https://doi.org/10.1080/01431161.2013.810825
- Kansas Forest Service. 2008. A Guide to Aid Local Central/Western Government in Addressing Pine Wilt Disease. pp.4-12.
- Kim, E.N. and D.Y. Kim. 2008. An Investigation of Pine Wilt Damage by Using Ground Remote Sensing Technique. Journal of The Korean Association of Regional Geographers 14(1):84-92.
- Kim, J.B., D.Y. Kim and N.C. Park. 2010. Development of an Aerial Precision Forecasting Techniques for the Pine Wilt Disease Damaged Area Based on GIS and GPS. Journal of the Korean Association of Geographic Information Studies 13(1):28-34. https://doi.org/10.11108/kagis.2010.13.1.028
- Kim, J.B., M.H. Jo., I.H. Kim and J.H. Park. 2002. Analysis of Topography spectral characteristics for Extracting Pine Wilt Disease Using IKONOS satellite image. The Korean Association of Geographic Information Studies 2002. pp.15-22.
- Kim S.R., E.S. Kim, Y.W. Nam, W.I. Choi and C.M. Kim. 2015. Distribution Characteristics Analysis of Pine Wilt Disease Using Time Series Hyperspectral Aerial Imagery. Korean Journal of Remote Sensing 31(5):385-394. https://doi.org/10.7780/kjrs.2015.31.5.3
- Korea Forest Research Institute. 2009. Pine Wilt Disease of Ecological Characteristics Research. pp.167-193.
- Korea Rural Economic Institute. 2014. Pine Wilt Disease and control policy task. pp. 1.
- Lee, H.J., L.J. Ho and S.Y. Kim. 2011. Land cover object-oriented base classification using digital aerial photo image. Journal of the Korean Society for Geo-Spatial Information System 19(1):105-113.
- Lee, H.J., Y.Y. Geol and R.J. Ho. 2010. Improvement of accuracy in land cover information using an object-based classification. Journal of the Korean Society for Geo-Spatial Information System 18(3):11-12.
- Lee, J.B., D.Y. Heo and Y.D. Eo. 2007. Study on selection of optimized segmentation parameters and analysis of classification accuracy for object-oriented classification. Korean Journal of Remote Sensing 23(6):521-528. https://doi.org/10.7780/kjrs.2007.23.6.521
- Lee, M.B. 2010. A geomorphic surface analysis using remote sensing in DMZ of Chugaryeong rift valley, Central Korea. Journal of the Korean Geomorphological Association 17(1):1-14.
- Lee, S.H., Y.G. Oh., N.Y. Park., S.H. Lee and J.Y. Choi. 2014. Extraction of paddy field in Jaeryeong, North Korea by object-oriented classification with RapidEye NDVI imagery. Journal of the Korean Society of Agricultural Engineers 56(3):55-64. https://doi.org/10.5389/KSAE.2014.56.3.055
- Na, H.S. and J.S. Lee. 2014. Analysis of Land Cover Characteristics with Object-Based Classification Method - Focusing on the DMZ in Inje-gun, Gangwon-do -. Journal of the Korean Association of Geographic Information Studies 17(2):121-135. https://doi.org/10.11108/kagis.2014.17.2.121
- National Institute of Forest Science, 2014, http://forest.go.kr/newkfsweb/html/HtmlPage.do?pg=/conser/conser_020103.html&mn=KFS_14_03_10_01_03&orgId=kfri (A ccessed March 2019).
- Park, G.D. 2016. Studies on Forest Stand Management of Pinus thunbergii in Jeju Island. Ph.D. Thesis, Univ. of Gangwon, Kangwon-do, Korea. pp.40-66.
- Son, M.H., W.K. Lee., S.H. Lee., H.K. Cho and J.H. Lee. 2006. Natural Spread Pattern of Damaged Area by Pine Wilt Disease Using Geostatistical Analysis. Journal of Korean Forest Society 95(3): 240-249.
- Takenaka, Y., M. Katoh., S. Deng and K. Cheung. 2017. Detecting Forests Damaged by Pine Wilt Disease at the Individual Tree Level using Airborne Laser data and WORLDVIEW-2/3 Images over Two Seasons. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Volume XLII-3/W3.
- Walter, V. 2004. Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing 58(3-4):225-238. https://doi.org/10.1016/j.isprsjprs.2003.09.007