DOI QR코드

DOI QR Code

Application of Hot Spot Analysis for Interpreting Soil Heavy-Metal Concentration Data in Abandoned Mines

폐금속 광산의 토양 중금속 오염 조사 자료 해석을 위한 핫스팟 분석의 적용

  • LEE, Chae-Young (Dept. of Transport Big Data, The Korea Transport Institute) ;
  • KIM, Sung-Min (Dept. of Energy Engineering, Kangwon National University) ;
  • CHOI, Yo-Soon (Dept. of Energy Resources Engineering, Pukyong National University)
  • 이채영 (한국교통연구원 교통빅데이터연구본부) ;
  • 김성민 (강원대학교 에너지공학부) ;
  • 최요순 (부경대학교 에너지자원공학과)
  • Received : 2019.03.15
  • Accepted : 2019.03.28
  • Published : 2019.06.30

Abstract

In this study, a hotspot analysis was conducted to suggest a new method for interpreting soil heavy-metal contamination data of abandoned metal mines according to statistical significance level. The spatial autocorrelation of the data was analyzed using the Getis-Ord $Gi{\ast}$ statistic in order to check whether soil heavy metal contamination data showing abnormal values appeared concentrated or dispersed in a specific space. As a result, the statistically significant data showing abnormal values in the mine area could be classified as follows: (1) the contamination degree and the hotspot value (z-score) were both high, (2) the contamination degree was high but the z-score was low, (3) the contamination degree was low but the z-score was high and (4) the contamination degree and the z-score were both low. The proposed method can be used to interpret the soil heavy metal contamination data according to the statistical significance level and to support a rational decision for soil contamination management in abandoned mines.

본 연구에서는 핫스팟 분석을 통해 폐금속 광산의 토양 중금속 오염 조사 자료를 통계적 유의수준에 따라 해석할 수 있는 새로운 방법을 제시하였다. 이상 값을 나타내는 토양 중금속 오염 조사 자료들이 특정한 공간에 집중 또는 분산되어 나타나는지를 확인하기 위해 자료들의 공간적 자기상 관성을 Getis-Ord $Gi{\ast}$ 통계량을 이용하여 분석하였다. 그 결과 폐금속 광산지역에서 이상 값을 나타내는 자료들이 통계적으로 얼마나 유의미하게 집중되어 있는지 확인할 수 있었다. 각각의 자료들이 가지는 중금속 원소별 오염도 값과 Getis-Ord $Gi{\ast}$ 통계량 계산 결과를 이용하여 자료들을 (1) 오염도와 집중도가 모두 높은 것, (2) 오염도는 높으나 집중도가 낮은 것, (3) 오염도는 낮으나 집중도가 높은 것, (4) 오염도와 집중도가 모두 낮은 것 중 하나의 유형으로 분류할 수 있었다. 이러한 분류 결과를 활용하면 토양 중금속 오염 조사자료를 통계적 유의수준에 따라 해석할 수 있으며, 폐광산 지역의 토양오염 관리와 관련하여 합리적인 의사결정을 지원할 수 있으리라 판단된다.

Keywords

GRJBBB_2019_v22n2_24_f0001.png 이미지

FIGURE 1. Distribution of soil concentration survey data in the study area

GRJBBB_2019_v22n2_24_f0002.png 이미지

FIGURE 2. Distribution of Arsenic concentration in soils

GRJBBB_2019_v22n2_24_f0003.png 이미지

FIGURE 3. Procedure of hot spot analysis for interpreting survey data of soil heavy-metal concentrations

GRJBBB_2019_v22n2_24_f0004.png 이미지

FIGURE 4. Spatial autocorrelations of (a) raw data, (b) square root transformed data and (c) log transformed data.

GRJBBB_2019_v22n2_24_f0005.png 이미지

FIGURE 5. Graph of statistical significance for interpreting As contamination in soils

GRJBBB_2019_v22n2_24_f0006.png 이미지

FIGURE 6. Results of hotspot analysis using (a) raw data, (b) square root transformed data and (c) Log transformed data

GRJBBB_2019_v22n2_24_f0007.png 이미지

FIGURE 6. Continued

GRJBBB_2019_v22n2_24_f0008.png 이미지

FIGURE 7. Result showing the statistical significance for interpreting As contamination in soils

TABLE 1. Summary of geology for mines

GRJBBB_2019_v22n2_24_t0001.png 이미지

TABLE 2. Number of contamination sources at the study area

GRJBBB_2019_v22n2_24_t0002.png 이미지

TABLE 3. Descriptive statistics of arsenic concentration at the study area.

GRJBBB_2019_v22n2_24_t0003.png 이미지

TABLE 4. Descriptive statistics of Gi* z-scores determined by hotspot analysis

GRJBBB_2019_v22n2_24_t0004.png 이미지

References

  1. Ceccato, V. and L. Dolmen, 2011. Crime in rural Sweden. Applied Geography 31:119-135. https://doi.org/10.1016/j.apgeog.2010.03.002
  2. Getis, A. and J.K. Ord, 1992. The analysis of spatial association by use of distance statistics, Geographical Analysis 24:189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
  3. Griffith, D.A., Y. Chun, and M. Lee, 2016. Locational Error Impacts on Local Spatial Autocorrelation Indices: A Syracuse Soil Sample Pb-Level Data Case Study. Proceedings of the Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Montpellier, France, 5-8 July, pp.136-143.
  4. Jeong, K.S., T.H. Moon, J.H. Jeong, and S.Y. Heo, 2009. Anaysis of Spatio-temporal Pattern of Urban Crime and Its Influencing Factors. Journal of the Association of Korean Geographers 12(1):12-25.
  5. Kim, D.Y. 2014. Spatial Analysis for Forest Fire Using GIS. The Geographical Journal of Korea 48(3):325-336.
  6. Kim, S.M., Y. Choi, J. Suh, S. Oh, H.D. Park, and S.H. Yoon, 2012. Estimation of soil erosion and sediment yield from mine tailing dumps using GIS: A case study at the Samgwang mine, Korea, Geosystem Engineering 15:2-9. https://doi.org/10.1080/12269328.2012.674426
  7. Kim, S.M. and Y. Choi, 2017. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data. International Journal of Environment Research and Public Health 14:654. https://doi.org/10.3390/ijerph14060654
  8. Kim, S.M., Y. Choi, H. Yi, and H.D. Park, 2017. Geostatistical prediction of heavy metal concentrations in stream sediments considering the stream networks, Environmental Earth Sciences 76:72-89. https://doi.org/10.1007/s12665-017-6394-2
  9. Kim, S.M. and Y. Choi, 2019. Mapping Heavy Metal Concentrations in Beach Sands Using GIS and Portable XRF Data, Journal of Marine Science and Engineering 7(2):42. https://doi.org/10.3390/jmse7020042
  10. Lee, H. and Y. Choi, 2014. A Study on the soil contamination maps using the handheld XRF and GIS in abandoned mining areas, Journal of Korean Association of Geographic Information Studies 17(3):195-206. https://doi.org/10.11108/kagis.2014.17.3.195
  11. Lee, J.S. and J.B. Chon, 2016. Factors Affecting the Spatial Clustering Pattern of Major Office Buildings in Seoul : Changing Impacts between 2003 and 2012. Journal of the Architectural Institute of Korea Planning & Design 32(7):105-109. https://doi.org/10.5659/JAIK_PD.2016.32.7.105
  12. Leslie, T.F., C.L. Frankenfeld, and M.A. Makara, 2012. The spatial food environment of the DC metropolitan area: Clustering, co-location, and categorical differentiation. Applied Geography 35:300-307. https://doi.org/10.1016/j.apgeog.2012.07.008
  13. Ma, Z., B. Zuckerberg, W.F. Porter, and L. Zhang, 2012. Use of localized descriptive statistics for exploring the spatial pattern changes of bird species richness at multiple scales, Applied Geography 32:185-194. https://doi.org/10.1016/j.apgeog.2011.05.005
  14. McClintock, N. 2012. Assessing soil lead contamination at multiple scales in Oakland, California: Implications for urban agriculture and environmental justice, Applied Geography 35:460-473. https://doi.org/10.1016/j.apgeog.2012.10.001
  15. MOE. 2007. Detailed investigation of soil contamination of waste metal mine. pp. 268-342.
  16. Wang, F., D. Guo, and S. McLafferty, 2012. Constructing geographic areas for cancer data analysis: A case study on late- stage breast cancer risk in Illinois, Applied Geography 35:1-11. https://doi.org/10.1016/j.apgeog.2012.04.005
  17. Zhang, P., D.W. Wong, B.K.L. So, and H. Lin, 2012. An exploratory spatial analysis of western medical services in Republican Beijing, Applied Geography 32:556-565. https://doi.org/10.1016/j.apgeog.2011.07.003