DOI QR코드

DOI QR Code

UAV를 활용한 농촌지역 비점오염원 야적퇴비 관리상태 및 적재량 변화 모니터링

Monitoring of non-point Pollutant Sources: Management Status and Load Change of Composting in a Rural Area based on UAV

  • 박건웅 (창원대학교 친환경해양플랜트FEED공학) ;
  • 박경훈 (창원대학교 토목환경화공융합공학부) ;
  • 문병현 (창원대학교 토목환경화공융합공학부) ;
  • 송봉근 (창원대학교 산업기술연구원)
  • PARK, Geon-Ung (Dept. of FEED of Eco-Friendly Offshore structure, Changwon National University) ;
  • PARK, Kyung-Hun (School of Civil, Environmental and Chemical Engineering, Changwon National University) ;
  • MOON, Byung-Hyun (School of Civil, Environmental and Chemical Engineering, Changwon National University) ;
  • SONG, Bong-Geun (Industrial Technology Research Institute, Changwon National University)
  • 투고 : 2019.03.08
  • 심사 : 2019.03.25
  • 발행 : 2019.06.30

초록

농촌지역에서 야적퇴비가 비점오염원으로 작용하고 있으나, 정량적으로 분포 및 적재량이 산정되지 않아 야적퇴비가 유실되어 하천 수질에 미치는 영향을 파악하기 어렵다. 본 연구에서는 지상 LiDAR를 활용하여 UAV(Unmanned Aerial Vehicle)의 야적퇴비 데이터를 검증하고, 수동조종비행으로 UAV를 활용하여 야적퇴비 탐색 및 촬영 후 관리상태 및 적재량 변화를 파악함으로써, 수계에 미치는 영향을 판단하기 위한 기초자료를 확보하고자 한다. 지상 LiDAR를 기준으로 정확도를 비교분석한 결과 DSM(Digital Surface Model)에 대해 약 0.21m 이내의 차이를 보이며 적재량의 정확도는 93.24%로 나타나, UAV 영상을 이용하여 야적퇴비의 적재량을 산출하고 활용하기에 충분하다고 판단된다. UAV를 활용하여 야적퇴비의 관리상태를 확인할 수 있었으며, 총 야적 퇴비 적재량은 $1,172.16m^3$, $1,461.66m^3$, $1,350.53m^3$순으로 나타나 야적퇴비 적재량 변화를 파악할 수 있었다. 본 연구의 결과는 UAV를 활용하여 효율적인 비점오염원 관리에 기여할 수 있을 것으로 판단된다.

In rural areas, composting is a source of non-point pollutants. However, as the quantitative distribution and loading have not been estimated, it is difficult to determine the effect of composting on stream water quality. In this study, composting datum acquired by unmanned aerial vehicle(UAV) was verified by using terrestrial LiDAR, and the management status and load change of the composting was investigated by UAV with manual control flight, thereby obtaining the basic data to determine the effect on the water system. As a result of the comparative accuracy assessment based on terrestrial LiDAR, the difference in the digital surface model(DSM) was within 0.21m and the accuracy of the volume was 93.24%. We expect that the accuracy is sufficient to calculate and utilize the composting load acquired by UAV. Thus, the management status of composting can be investigated by UAV. As the total load change of composting were determined to be $1,172.16m^3$, $1,461.66m^3$, and $1,350.53m^3$, respectively, the load change of composting could be confirmed. We expect that the results of this study can contribute to efficient management of non-point source pollution by UAV.

키워드

GRJBBB_2019_v22n2_1_f0001.png 이미지

FIGURE 1. Study Process

GRJBBB_2019_v22n2_1_f0002.png 이미지

FIGURE 2. Study sites

GRJBBB_2019_v22n2_1_f0003.png 이미지

FIGURE 3. UAV manual photography method

GRJBBB_2019_v22n2_1_f0004.png 이미지

FIGURE 4. Position of tie points

GRJBBB_2019_v22n2_1_f0005.png 이미지

FIGURE 5. Comparison area and location of checkline

GRJBBB_2019_v22n2_1_f0006.png 이미지

FIGURE 6. Volume calculation method of composting

GRJBBB_2019_v22n2_1_f0007.png 이미지

FIGURE 7. UAV DSM (left) and Terrestrial LiDAR DSM (right)

GRJBBB_2019_v22n2_1_f0008.png 이미지

FIGURE 9. the location of composting

GRJBBB_2019_v22n2_1_f0009.png 이미지

FIGURE 8. Profile comparison result of DSM of UAV and LiDAR

TABLE 1. Detail of Phantom 4 Pro

GRJBBB_2019_v22n2_1_t0001.png 이미지

TABLE 2. The specification of RIEGL VZ-400i

GRJBBB_2019_v22n2_1_t0002.png 이미지

TABLE 3. Result of geometrical treatment

GRJBBB_2019_v22n2_1_t0003.png 이미지

TABLE 4. Result of volume analysis

GRJBBB_2019_v22n2_1_t0004.png 이미지

TABLE 6. Presence or absence of covers by photography shooting time

GRJBBB_2019_v22n2_1_t0005.png 이미지

TABLE 7. DSM volume of composting

GRJBBB_2019_v22n2_1_t0006.png 이미지

참고문헌

  1. Ahn, J.H., I.H. Song and M.S. Kang. 2013. Correlation between raw materials and chemical contents of livestock compost. Journal of the Korean Society of Agricultural Engineers 55(2):37-45. https://doi.org/10.5389/KSAE.2013.55.2.037
  2. Choi, J.K., J.G. Son., H.J. Lee and Y.J. Kim. 2012a. Runoff characteristics of total-N and total-P in upland surface runoff treated with livestock manure compost. Journal of the Korean Society of Agricultural Engineers 54(6):29-37. https://doi.org/10.5389/KSAE.2012.54.6.029
  3. Choi, J.K., J.G. Son., K.S. Yoon., H.J. Lee and Y.J. Kim. 2012b. Runoff characteristics in paddy field using cow manure compost fertilizer. Journal of the Korean Society of Agricultural Engineers 54(3):29-36. https://doi.org/10.5389/KSAE.2012.54.3.029
  4. Choi, Y.W., J.H. Ho and G.S. Cho. 2015. Accuracy analysis of UAV data processing using DPW. Journal of the Korean Society for Geospatial Information Science 23(4):3-10. https://doi.org/10.7319/kogsis.2015.23.4.003
  5. Gyeongsangnam-do. 2015. Phase 3 Basic plan for Total Pollution Loads Management System in Gyeongsangnam-do
  6. Hong, S.G. and J.T. Kim. 2001. Assessment of leachate characteristics of manure compost under rainfall simulation. Journal of Korean Society of Rural Planning 7(2):65-73.
  7. Konkuk University. 2016. Nonpoint source pollution monitoring and control measure for agricultural and livestock areas. Ministry of Agriculture.
  8. Lee, Y.S., H.J. Lee, S.C. Hong and D.M. Oh. 2009. Effect of non-point sources from Livestock composted land - A case of cows manure. Journal of Korea Wetlands Society 11(3):81-88
  9. Lee, J.H. 2018. http://www.anewsa.com/detail.php?number=1289962&thread=09r06.
  10. Lee, D.G., Y.G. Yu., J.H. Ru and H.J. Lee. 2016. Change monitoring in ecological restoration area of open-pit mine using drone photogrammetry. Journal of the Korean Society for Geospatial Information Science 24(4):97-104. https://doi.org/10.7319/kogsis.2016.24.4.097
  11. Lee, H.J. and G.S. Cho. 2017. Comparative accuracy of terrestrial LiDAR and unmanned aerial vehicles for 3D modeling of cultural properties. Journal of Cadastre & Land InformatiX 47(1): 179-190. https://doi.org/10.22640/LXSIRI.2017.47.1.179
  12. Nakdong river environment research center. 2012. Management methods and runoff survey of non-point pollutants in upstream Nam-river dam.
  13. Oh, K.Y., J.S. Kim and J.W. Cho. 2007. Characteristics of pollutant concentrations in runoff water from a small rural watershed. Journal of the Korean Society of Agricultural Engineers 49(2): 99-108. https://doi.org/10.5389/KSAE.2007.49.2.099
  14. Park, J.K. and D.Y. Um. 2018. Utilization evaluation of digital surface model by UAV for reconnaissance survey of construction project. Journal of the Korea Academia-Industrial cooperation Society 19(3):155-160. https://doi.org/10.5762/KAIS.2018.19.3.155
  15. Park, J.K., S.Y. Lee., I.T. Yang and D.M. Kim. 2010. Monitoring of the natural terrain behavior using the terrestrial LiDAR. Journal of The Korean Society of Civil Engineers 30(2):191-198.
  16. Son, S.W., J.H. Yoon., J.H. Jo., T.H. Kim and H.J. Jeon. 2016. Analysis of disaster response technologies that use drones and trend of research pp.63-68.
  17. Won, C.H., Y.H. Choi., M.H. Shin., J.Y. Seo and J.D. Choi. 2011. Analysis of livestock resources on NPS pollution characteristics by rainfall simulation. Journal of the Korean Society of Agricultural Engineers 53(2):67-74. https://doi.org/10.5389/KSAE.2011.53.2.067
  18. Yu, J.J., H.S. Park., Y.J. Yang and D.H. Jang. 2016. Assessing the Applicability of UAS for detecting geomorphological changes in coastal areas: A case study in the Baramarae Beach in Anmyeondo. Journal of the Korean Geomorphological Association, 23(4):113-126. https://doi.org/10.16968/JKGA.23.4.113