DOI QR코드

DOI QR Code

수소화된 비정질 탄소 반사방지 코팅층이 염료감응형 태양전지의 효율에 미치는 영향

Effects of an a-C:H Anti-Reflective Coating on the Cell Efficiency of Dye-Sensitized Solar Cells (DSSCs)

  • Song, Jae-Sil (Department of Electrical Engineering, Chosun Unversity) ;
  • Kim, Nam-Hoon (Department of Electrical Engineering, Chosun Unversity) ;
  • Park, Yong Seob (Department of Electronics, Chosun College of Science & Technology)
  • 투고 : 2019.03.08
  • 심사 : 2019.04.13
  • 발행 : 2019.07.01

초록

Raman spectra of a-C:H thin films deposited with an unbalanced magnetron sputtering system showed that the G peak shifted to a higher wavenumber as the target power density increased and $I_D/I_G$ ratio increased from 0.902 to 1.012. Moreover, the transmittance of a-C:H films fabricated at 60 nm tended to decrease with increasing target power density; at 550 nm in the visible light region, the transmittance decreased from 69% to 58%. The rms surface roughness values of the a-C:H thin films decreased with increasing target power density, and varied from 1.11 nm to 0.71 nm. In order to achieve efficient light trapping, the light scattering at the rough interface must be enhanced. Consequently, the surface roughness of the thin film will decrease with the target power density. Further, the refractive index and reflectivity of the a-C:H thin films increased with increasing target power density; however, the Brewster angle decreased with the target power density. Hence, dye-sensitized solar cells using an a-C:H antireflective coating increased the CE, $V_{OC}$, and $J_{SC}$ by approximately 8.6%, 5.5%, and 4.5%, respectively.

키워드

JJJRCC_2019_v32n4_281_f0001.png 이미지

Fig. 1. Characteristics of DSSC using a-C:H AR coating films fabricated with various target power densities.

JJJRCC_2019_v32n4_281_f0002.png 이미지

Fig. 2. Transmittance of a-C:H thin films fabricated with various target power densities.

JJJRCC_2019_v32n4_281_f0003.png 이미지

Fig. 3. 3D images of a-C:H thin film fabricated at the conditions (a) 20 W/cm2, (b) 29 W/cm2 target power densities, and (c) Rms surface roughness of a-C:H thin films fabricated with various target power densities.

JJJRCC_2019_v32n4_281_f0004.png 이미지

Fig. 5. Refractive index, reflection, and brewster’s angle values of a-C:H thin films fabricated with various target power densities.

JJJRCC_2019_v32n4_281_f0005.png 이미지

Fig. 4. (a) Raman spectra of a-C:H thin films fabricated with various target power densities and (b) the results of gaussian Raman fitting (G peak position and ID/IG ratio).

Table 1. Electrical characteristics of DSSC using a-C:H AR coating films fabricated with various target power densities.

JJJRCC_2019_v32n4_281_t0001.png 이미지

참고문헌

  1. L. H. Guo and N. Qu, Anal. Chem., 78, 6275 (2006). [DOI:https://doi.org/10.1021/ac060351h]
  2. W. Lohmann and U. Karst, Anal. Chem., 79, 6831 (2007). [DOI: https://doi.org/10.1021/ac071100r]
  3. M. Dequaire, B. Limoges, J. Moiroux, and J. M. Saveant, J. Am. Chem. Soc., 124, 240 (2002). [DOI: https://doi.org/10.1021/ja0170706]
  4. F. C. Walsh, Pure Appl. Chem., 73, 1819 (2001). [DOI: https://doi.org/10.1351/pac200173121819]
  5. Z. Dai, F. Yan, J. Chen, and H. Ju, Anal. Chem., 75, 5429 (2003). [DOI: https://doi.org/10.1021/ac034213t]
  6. N. G. Park and K. Kim, Phys. Status Solidi A, 205, 1895 (2008). [DOI: https://doi.org/10.1002/pssa.200778938]
  7. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). [DOI:https://doi.org/10.1038/353737a0]
  8. H. Greijer, L. Karlson, S. E. Lindquist, and A. Hagfeldt, Renewable Energy, 23, 27 (2001). [DOI: https://doi.org/10.1016/s0960-1481(00)00111-7]
  9. F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Gratzel, J. Am. Chem. Soc., 130, 10720 (2008). [DOI: https://doi.org/10.1021/ja801942j]
  10. F. F. Sizov, N. I. Klyui, A. N. Luk'yanov, R. K. Savkina, A. B. Smirnov, and A. Z. Evmenova, Tech. Phys. Lett., 34, 377 (2008). [DOI: https://doi.org/10.1134/s1063785008050052]
  11. N. I. Klyui, V. G. Litovchenko, A. G. Rozhin, V. N. Dikusha, M. Kittler, and W. Seifert, Sol. Energy Mater. Sol. Cells, 72, 597 (2002). [DOI: https://doi.org/10.1016/s0927-0248(01)00209-4]
  12. O. A. Hamadi, M. K. Khalaf, F. J. Kadhim, and B. T. Chiad, Bulg. J. Phys., 41, 24 (2014).
  13. P. J. Kelly and R. D. Arnell, Vacuum, 56, 159 (2000). [DOI:https://doi.org/10.1016/s0042-207x(99)00189-x]
  14. T. You, O. Niwa, Z. Chen, K. Hayashi, M. Tomita, and S. Hirono, Anal. Chem., 75, 5191 (2003). [DOI: https://doi.org/10.1021/ac034204k]
  15. V. Kulikovsky, P. Bohac, F. Franc, A. Deineka, V. Vorlicek, and L. Jastrabik, Diamond Relat. Mater., 10, 1076 (2001). [DOI: https://doi.org/10.1016/s0925-9635(00)00525-2]
  16. A. Czyzniewski, Thin Solid Films, 433, 180 (2003). [DOI:https://doi.org/10.1016/s0040-6090(03)00324-9]
  17. A. Grill, Surf. Coat. Technol., 94, 507 (1997). [DOI: https://doi.org/10.1016/s0257-8972(97)00458-1]
  18. A. Grill, Thin Solid Films, 355, 189 (1999). [DOI: https://doi.org/10.1016/s0040-6090(99)00516-7]
  19. C. H. Kiang, W. A. Goddard III, R. Beyers, and D. S. Bethune, Carbon, 33, 903 (1995). [DOI: https://doi.org/10.1016/0008-6223(95)00019-a]