DOI QR코드

DOI QR Code

Nutritional Support for Patients with Pancreatic Cancer

췌장암에서 영양 치료

  • Jung, Min Kyu (Department of Internal Medicine, School of Medicine, Kyungpook National University)
  • 정민규 (경북대학교 의과대학 내과학교실)
  • Received : 2019.07.17
  • Accepted : 2019.08.01
  • Published : 2019.08.25

Abstract

Pancreatic cancer is the ninth common malignancy in South Korea. It has a dismal prognosis with a 5-year overall survival rate of less than 10%, and pancreatic cancer is associated with cancer cachexia, which is defined as the loss of muscle mass that is not reversible by conventional nutritional support. Cachexia is noted in over 85% of all pancreatic cancer patients and it is strongly related with the disease's mortality. Nearly 30% of pancreatic cancer deaths are due to cachexia rather than being due to the tumor burden. Therefore, it is crucial to discover the mechanisms behind the development of muscle wasting in pancreatic cancer patients and find novel therapeutics for targeting cachexia. This review deals with the current understanding about the development of cachexia and nutritional support in those patients suffering with pancreatic cancer.

Keywords

References

  1. Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013;369:1691-1703. https://doi.org/10.1056/NEJMoa1304369
  2. Koutsounas I, Giaginis C, Patsouris E, Theocharis S. Current evidence for histone deacetylase inhibitors in pancreatic cancer. World J Gastroenterol 2013;19:813-828. https://doi.org/10.3748/wjg.v19.i6.813
  3. Kneuertz PJ, Cunningham SC, Cameron JL, et al. Palliative surgical management of patients with unresectable pancreatic adenocarcinoma: trends and lessons learned from a large, single institution experience. J Gastrointest Surg 2011;15:1917-1927. https://doi.org/10.1007/s11605-011-1665-9
  4. Wigmore SJ, Plester CE, Richardson RA, Fearon KC. Changes in nutritional status associated with unresectable pancreatic cancer. Br J Cancer 1997;75:106-109. https://doi.org/10.1038/bjc.1997.17
  5. Gartner S, Kruger J, Aghdassi AA, et al. Nutrition in pancreatic cancer: a review. Gastrointest Tumors 2016;2:195-202. https://doi.org/10.1159/000442873
  6. Fearon KC, Baracos VE. Cachexia in pancreatic cancer: new treatment options and measures of success. HPB (Oxford) 2010;12:323-324. https://doi.org/10.1111/j.1477-2574.2010.00178.x
  7. Kyle UG, Pirlich M, Lochs H, Schuetz T, Pichard C. Increased length of hospital stay in underweight and overweight patients at hospital admission: a controlled population study. Clin Nutr 2005;24:133-142. https://doi.org/10.1016/j.clnu.2004.08.012
  8. Bachmann J, Heiligensetzer M, Krakowski-Roosen H, Buchler MW, Friess H, Martignoni ME. Cachexia worsens prognosis in patients with resectable pancreatic cancer. J Gastrointest Surg 2008;12:1193-1201. https://doi.org/10.1007/s11605-008-0505-z
  9. Evans WJ, Morley JE, Argiles J, et al. Cachexia: a new definition. Clin Nutr 2008;27:793-799. https://doi.org/10.1016/j.clnu.2008.06.013
  10. Bachmann J, Ketterer K, Marsch C, et al. Pancreatic cancer related cachexia: influence on metabolism and correlation to weight loss and pulmonary function. BMC Cancer 2009;9:255. https://doi.org/10.1186/1471-2407-9-255
  11. Felix K, Fakelman F, Hartmann D, et al. Identification of serum proteins involved in pancreatic cancer cachexia. Life Sci 2011;88:218-225. https://doi.org/10.1016/j.lfs.2010.11.011
  12. Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011;12:489-495. https://doi.org/10.1016/S1470-2045(10)70218-7
  13. Skipworth RJ, Stewart GD, Dejong CH, Preston T, Fearon KC. Pathophysiology of cancer cachexia: much more than host-tumour interaction? Clin Nutr 2007;26:667-676. https://doi.org/10.1016/j.clnu.2007.03.011
  14. Stewart GD, Skipworth RJ, Fearon KC. Cancer cachexia and fatigue. Clin Med (Lond) 2006;6:140-143. https://doi.org/10.7861/clinmedicine.6-2-140
  15. Metter EJ, Conwit R, Tobin J, Fozard JL. Age-associated loss of power and strength in the upper extremities in women and men. J Gerontol A Biol Sci Med Sci 1997;52:B267-B276.
  16. Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 2012;16:153-166. https://doi.org/10.1016/j.cmet.2012.06.011
  17. Mace TA, Ameen Z, Collins A, et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 2013;73:3007-3018. https://doi.org/10.1158/0008-5472.CAN-12-4601
  18. Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cachexia and sarcopenia: mechanisms and potential targets for intervention. Curr Opin Pharmacol 2015;22:100-106. https://doi.org/10.1016/j.coph.2015.04.003
  19. Martignoni ME, Kunze P, Hildebrandt W, et al. Role of mononuclear cells and inflammatory cytokines in pancreatic cancer-related cachexia. Clin Cancer Res 2005;11:5802-5808. https://doi.org/10.1158/1078-0432.CCR-05-0185
  20. Denley SM, Jamieson NB, McCall P, et al. Activation of the IL-6R/Jak/stat pathway is associated with a poor outcome in resected pancreatic ductal adenocarcinoma. J Gastrointest Surg 2013;17:887-898. https://doi.org/10.1007/s11605-013-2168-7
  21. Mitsunaga S, Ikeda M, Shimizu S, et al. Serum levels of IL-6 and IL-$1{\beta}$ can predict the efficacy of gemcitabine in patients with advanced pancreatic cancer. Br J Cancer 2013;108:2063-2069. https://doi.org/10.1038/bjc.2013.174
  22. Pop VV, Seicean A, Lupan I, Samasca G, Burz CC. IL-6 roles - molecular pathway and clinical implication in pancreatic cancer - a systemic review. Immunol Lett 2017;181:45-50. https://doi.org/10.1016/j.imlet.2016.11.010
  23. Farren MR, Mace TA, Geyer S, et al. Systemic immune activity predicts overall survival in treatment-naive patients with metastatic pancreatic cancer. Clin Cancer Res 2016;22:2565-2574. https://doi.org/10.1158/1078-0432.CCR-15-1732
  24. Zhou W, Jiang ZW, Tian J, Jiang J, Li N, Li JS. Role of NF-kappaB and cytokine in experimental cancer cachexia. World J Gastroenterol 2003;9:1567-1570. https://doi.org/10.3748/wjg.v9.i7.1567
  25. Bonetto A, Aydogdu T, Jin X, et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab 2012;303:E410-E421. https://doi.org/10.1152/ajpendo.00039.2012
  26. Bonetto A, Aydogdu T, Kunzevitzky N, et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One 2011;6:e22538. https://doi.org/10.1371/journal.pone.0022538
  27. Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr. NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 2000;289:2363-2366. https://doi.org/10.1126/science.289.5488.2363
  28. Zhang L, Tang H, Kou Y, et al. MG132-mediated inhibition of the ubiquitin-proteasome pathway ameliorates cancer cachexia. J Cancer Res Clin Oncol 2013;139:1105-1115. https://doi.org/10.1007/s00432-013-1412-6
  29. Melstrom LG, Melstrom KA Jr, Ding XZ, Adrian TE. Mechanisms of skeletal muscle degradation and its therapy in cancer cachexia. Histol Histopathol 2007;22:805-814.
  30. Fogelman DR, Morris J, Xiao L, et al. A predictive model of inflammatory markers and patient-reported symptoms for cachexia in newly diagnosed pancreatic cancer patients. Support Care Cancer 2017;25:1809-1817. https://doi.org/10.1007/s00520-016-3553-z
  31. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997;387:83-90. https://doi.org/10.1038/387083a0
  32. Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Ying SY. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood) 2006;231:534-544. https://doi.org/10.1177/153537020623100507
  33. Sartori R, Milan G, Patron M, et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 2009;296:C1248-C1257. https://doi.org/10.1152/ajpcell.00104.2009
  34. Loumaye A, de Barsy M, Nachit M, et al. Role of activin A and myostatin in human cancer cachexia. J Clin Endocrinol Metab 2015;100:2030-2038. https://doi.org/10.1210/jc.2014-4318
  35. Zhou X, Wang JL, Lu J, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 2010;142:531-543. https://doi.org/10.1016/j.cell.2010.07.011
  36. Togashi Y, Kogita A, Sakamoto H, et al. Activin signal promotes cancer progression and is involved in cachexia in a subset of pancreatic cancer. Cancer Lett 2015;356(2 Pt B):819-827. https://doi.org/10.1016/j.canlet.2014.10.037
  37. Greco SH, Tomkotter L, Vahle AK, et al. TGF-$\beta$ blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia. PLoS One 2015;10:e0132786. https://doi.org/10.1371/journal.pone.0132786
  38. Miyamoto Y, Hanna DL, Zhang W, Baba H, Lenz HJ. Molecular pathways: cachexia signaling-a targeted approach to cancer treatment. Clin Cancer Res 2016;22:3999-4004. https://doi.org/10.1158/1078-0432.CCR-16-0495
  39. Calnan DR, Brunet A. The FoxO code. Oncogene 2008;27:2276-2288. https://doi.org/10.1038/onc.2008.21
  40. Schmitt TL, Martignoni ME, Bachmann J, et al. Activity of the Akt-dependent anabolic and catabolic pathways in muscle and liver samples in cancer-related cachexia. J Mol Med (Berl) 2007;85:647-654. https://doi.org/10.1007/s00109-007-0177-2
  41. Avan A, Avan A, Le Large TY, et al. AKT1 and SELP polymorphisms predict the risk of developing cachexia in pancreatic cancer patients. PLoS One 2014;9:e108057. https://doi.org/10.1371/journal.pone.0108057
  42. Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab 2004;287:E591-E601. https://doi.org/10.1152/ajpendo.00073.2004
  43. Abbott CR, Monteiro M, Small CJ, et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res 2005;1044:127-131. https://doi.org/10.1016/j.brainres.2005.03.011
  44. Kim SY, Park SM, Lee ST. Apolipoprotein C-II is a novel substrate for matrix metalloproteinases. Biochem Biophys Res Commun 2006;339:47-54. https://doi.org/10.1016/j.bbrc.2005.10.182
  45. Russell ST, Zimmerman TP, Domin BA, Tisdale MJ. Induction of lipolysis in vitro and loss of body fat in vivo by zinc-alpha2-glycoprotein. Biochim Biophys Acta 2004;1636:59-68. https://doi.org/10.1016/j.bbalip.2003.12.004
  46. Ronga I, Gallucci F, Riccardi F, Uomo G. Anorexia-cachexia syndrome in pancreatic cancer: recent advances and new pharmacological approach. Adv Med Sci 2014;59:1-6. https://doi.org/10.1016/j.advms.2013.11.001
  47. Uomo G, Gallucci F, Rabitti PG. Anorexia-cachexia syndrome in pancreatic cancer: recent development in research and management. JOP 2006;7:157-162.
  48. Ramos EJ, Suzuki S, Marks D, Inui A, Asakawa A, Meguid MM. Cancer anorexia-cachexia syndrome: cytokines and neuropeptides. Curr Opin Clin Nutr Metab Care 2004;7:427-434. https://doi.org/10.1097/01.mco.0000134363.53782.cb
  49. Mueller TC, Burmeister MA, Bachmann J, Martignoni ME. Cachexia and pancreatic cancer: are there treatment options? World J Gastroenterol 2014;20:9361-9373. https://doi.org/10.3748/wjg.v20.i28.9361
  50. Sikkens EC, Cahen DL, de Wit J, Looman CW, van Eijck C, Bruno MJ. Prospective assessment of the influence of pancreatic cancer resection on exocrine pancreatic function. Br J Surg 2014;101:109-113. https://doi.org/10.1002/bjs.9342
  51. Hackert T, Schutte K, Malfertheiner P. The pancreas: causes for malabsorption. Viszeralmedizin 2014;30:190-197. https://doi.org/10.1159/000363778
  52. Kanda M, Fujii T, Kodera Y, Nagai S, Takeda S, Nakao A. Nutritional predictors of postoperative outcome in pancreatic cancer. Br J Surg 2011;98:268-274. https://doi.org/10.1002/bjs.7305
  53. Loh KW, Vriens MR, Gerritsen A, et al. Unintentional weight loss is the most important indicator of malnutrition among surgical cancer patients. Neth J Med 2012;70:365-369.
  54. La Torre M, Ziparo V, Nigri G, Cavallini M, Balducci G, Ramacciato G. Malnutrition and pancreatic surgery: prevalence and outcomes. J Surg Oncol 2013;107:702-708. https://doi.org/10.1002/jso.23304
  55. Billingsley KG, Hur K, Henderson WG, Daley J, Khuri SF, Bell RH Jr. Outcome after pancreaticoduodenectomy for periampullary cancer: an analysis from the veterans affairs national surgical quality improvement program. J Gastrointest Surg 2003;7:484-491. https://doi.org/10.1016/S1091-255X(03)00067-2
  56. Gibbs J, Cull W, Henderson W, Daley J, Hur K, Khuri SF. Preoperative serum albumin level as a predictor of operative mortality and morbidity: results from the national VA surgical risk study. Arch Surg 1999;134:36-42. https://doi.org/10.1001/archsurg.134.1.36
  57. Augustin T, Burstein MD, Schneider EB, et al. Frailty predicts risk of life-threatening complications and mortality after pancreatic resections. Surgery 2016;160:987-996. https://doi.org/10.1016/j.surg.2016.07.010
  58. Imaoka H, Mizuno N, Hara K, et al. Evaluation of modified glasgow prognostic score for pancreatic cancer: a retrospective cohort study. Pancreas 2016;45:211-217. https://doi.org/10.1097/MPA.0000000000000446
  59. Lucas DJ, Schexneider KI, Weiss M, et al. Trends and risk factors for transfusion in hepatopancreatobiliary surgery. J Gastrointest Surg 2014;18:719-728. https://doi.org/10.1007/s11605-013-2417-9
  60. Sikkens EC, Cahen DL, de Wit J, Looman CW, van Eijck C, Bruno MJ. A prospective assessment of the natural course of the exocrine pancreatic function in patients with a pancreatic head tumor. J Clin Gastroenterol 2014;48:e43-e46. https://doi.org/10.1097/MCG.0b013e31829f56e7
  61. Lindkvist B, Phillips ME, Dominguez-Munoz JE. Clinical, anthropometric and laboratory nutritional markers of pancreatic exocrine insufficiency: prevalence and diagnostic use. Pancreatology 2015;15:589-597. https://doi.org/10.1016/j.pan.2015.07.001
  62. Roeyen G, Jansen M, Chapelle T, et al. Diabetes mellitus and pre-diabetes are frequently undiagnosed and underreported in patients referred for pancreatic surgery. A prospective observational study. Pancreatology 2016;16:671-676. https://doi.org/10.1016/j.pan.2016.04.032
  63. Illes D, Terzin V, Holzinger G, et al. New-onset type 2 diabetes mellitus--a high-risk group suitable for the screening of pancreatic cancer? Pancreatology 2016;16:266-271. https://doi.org/10.1016/j.pan.2015.12.005
  64. Gupta S, Vittinghoff E, Bertenthal D, et al. New-onset diabetes and pancreatic cancer. Clin Gastroenterol Hepatol 2006;4:1366-1372. https://doi.org/10.1016/j.cgh.2006.06.024
  65. Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology 2008;134:981-987. https://doi.org/10.1053/j.gastro.2008.01.039
  66. Giovannucci E, Michaud D. The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology 2007;132:2208-2225. https://doi.org/10.1053/j.gastro.2007.03.050
  67. Hart PA, Baichoo E, Bi Y, Hinton A, Kudva YC, Chari ST. Pancreatic polypeptide response to a mixed meal is blunted in pancreatic head cancer associated with diabetes mellitus. Pancreatology 2015;15:162-166. https://doi.org/10.1016/j.pan.2015.02.006
  68. Cooperman AM, Chivati J, Chamberlain RS. Nutritional and metabolic aspects of pancreatic cancer. Curr Opin Clin Nutr Metab Care 2000;3:17-21. https://doi.org/10.1097/00075197-200001000-00004
  69. Klek S, Sierzega M, Szybinski P, et al. The immunomodulating enteral nutrition in malnourished surgical patients - a prospective, randomized, double-blind clinical trial. Clin Nutr 2011;30:282-288. https://doi.org/10.1016/j.clnu.2010.10.001
  70. Gianotti L, Braga M, Gentilini O, Balzano G, Zerbi A, Di Carlo V. Artificial nutrition after pancreaticoduodenectomy. Pancreas 2000;21:344-351. https://doi.org/10.1097/00006676-200011000-00004
  71. Di Carlo V, Gianotti L, Balzano G, Zerbi A, Braga M. Complications of pancreatic surgery and the role of perioperative nutrition. Dig Surg 1999;16:320-326. https://doi.org/10.1159/000018742
  72. Karagianni VT, Papalois AE, Triantafillidis JK. Nutritional status and nutritional support before and after pancreatectomy for pancreatic cancer and chronic pancreatitis. Indian J Surg Oncol 2012;3:348-359. https://doi.org/10.1007/s13193-012-0189-4
  73. Park JS, Chung HK, Hwang HK, Kim JK, Yoon DS. Postoperative nutritional effects of early enteral feeding compared with total parental nutrition in pancreaticoduodectomy patients: a prosepective, randomized study. J Korean Med Sci 2012;27:261-267. https://doi.org/10.3346/jkms.2012.27.3.261
  74. Liu C, Du Z, Lou C, et al. Enteral nutrition is superior to total parenteral nutrition for pancreatic cancer patients who underwent pancreaticoduodenectomy. Asia Pac J Clin Nutr 2011;20:154-160.
  75. Park JW, Jang JY, Kim EJ, et al. Effects of pancreatectomy on nutritional state, pancreatic function and quality of life. Br J Surg 2013;100:1064-1070. https://doi.org/10.1002/bjs.9146
  76. Nussbaum DP, Zani S, Penne K, et al. Feeding jejunostomy tube placement in patients undergoing pancreaticoduodenectomy: an ongoing dilemma. J Gastrointest Surg 2014;18:1752-1759. https://doi.org/10.1007/s11605-014-2581-6
  77. Richter E, Denecke A, Klapdor S, Klapdor R. Parenteral nutrition support for patients with pancreatic cancer--improvement of the nutritional status and the therapeutic outcome. Anticancer Res 2012;32:2111-2118.
  78. Pelzer U, Arnold D, Govercin M, et al. Parenteral nutrition support for patients with pancreatic cancer. Results of a phase II study. BMC Cancer 2010;10:86. https://doi.org/10.1186/1471-2407-10-86
  79. Vashi PG, Dahlk S, Popiel B, Lammersfeld CA, Ireton-Jones C, Gupta D. A longitudinal study investigating quality of life and nutritional outcomes in advanced cancer patients receiving home parenteral nutrition. BMC Cancer 2014;14:593. https://doi.org/10.1186/1471-2407-14-593
  80. Davidson W, Ash S, Capra S, Bauer J, Cancer Cachexia Study Group. Weight stabilisation is associated with improved survival duration and quality of life in unresectable pancreatic cancer. Clin Nutr 2004;23:239-247. https://doi.org/10.1016/j.clnu.2003.07.001
  81. Wigmore SJ, Barber MD, Ross JA, Tisdale MJ, Fearon KC. Effect of oral eicosapentaenoic acid on weight loss in patients with pancreatic cancer. Nutr Cancer 2000;36:177-184. https://doi.org/10.1207/S15327914NC3602_6
  82. Fearon KC, Von Meyenfeldt MF, Moses AG, et al. Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut 2003;52:1479-1486. https://doi.org/10.1136/gut.52.10.1479
  83. Heller AR, Rossel T, Gottschlich B, et al. Omega-3 fatty acids improve liver and pancreas function in postoperative cancer patients. Int J Cancer 2004;111:611-616. https://doi.org/10.1002/ijc.20291
  84. Arshad A, Isherwood J, Mann C, et al. Intravenous $\omega$-3 fatty acids plus gemcitabine. JPEN J Parenter Enteral Nutr 2017;41:398-403. https://doi.org/10.1177/0148607115595221
  85. Kraft M, Kraft K, Gartner S, et al. L-carnitine-supplementation in advanced pancreatic cancer (CARPAN)--a randomized multicentre trial. Nutr J 2012;11:52. https://doi.org/10.1186/1475-2891-11-52
  86. Corish CA, Kennedy NP. Protein-energy undernutrition in hospital in-patients. Br J Nutr 2000;83:575-591. https://doi.org/10.1017/S000711450000074X
  87. Barker LA, Gout BS, Crowe TC. Hospital malnutrition: prevalence, identification and impact on patients and the healthcare system. Int J Environ Res Public Health 2011;8:514-527. https://doi.org/10.3390/ijerph8020514