DOI QR코드

DOI QR Code

Hepatobiliary Manifestation of Inflammatory Bowel Disease

염증성 장질환 환자의 간담도계 발현

  • Seo, Kwang Il (Department of Internal Medicine, Kosin University College of Medicine) ;
  • Kang, Sang-Bum (Division of Gastroenterology, Department of Internal Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • 서광일 (고신대학교 의과대학 내과학교실) ;
  • 강상범 (가톨릭대학교 의과대학 대전성모병원 소화기내과)
  • Received : 2019.04.03
  • Accepted : 2019.05.12
  • Published : 2019.05.25

Abstract

The hepatobiliary system is one of the most common sites of extraintestinal manifestation in patients with inflammatory bowel disease (IBD). The progression of IBD can lead to a primary hepatobiliary manifestation and can occur secondary to multiple drugs or accompanying viral infections. Primary sclerosing cholangitis is the representative hepatobiliary manifestation of IBD, particularly in ulcerative colitis. Although most agents used in the treatment of IBD are potentially hepatotoxic, the risk of serious hepatitis or liver failure is low. The prevalence of HBV and HCV in IBD is similar to the general population, but the clinical concern is HBV reactivation associated with immunosuppressive therapy. Patients undergoing cytotoxic chemotherapy or immunosuppressive therapy with a moderate to high risk of HBV reactivation require prophylactic antiviral therapy. On the other hand, HCV has little risk of reactivation. Patients with IBD are more likely to have nonalcoholic fatty liver disease than the general population and tend to occur at younger ages. IBD and cholelithiasis are closely related, especially in Crohn's disease.

Keywords

References

  1. Wiesner RH, Grambsch PM, Dickson ER, et al. Primary sclerosing cholangitis: natural history, prognostic factors and survival analysis. Hepatology 1989;10:430-436. https://doi.org/10.1002/hep.1840100406
  2. Karlsen TH, Schrumpf E, Boberg KM. Primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol 2010;24:655-666. https://doi.org/10.1016/j.bpg.2010.07.005
  3. Bambha K, Kim WR, Talwalkar J, et al. Incidence, clinical spectrum, and outcomes of primary sclerosing cholangitis in a United States community. Gastroenterology 2003;125:1364-1369. https://doi.org/10.1016/j.gastro.2003.07.011
  4. Boonstra K, van Erpecum KJ, van Nieuwkerk KM, et al. Primary sclerosing cholangitis is associated with a distinct phenotype of inflammatory bowel disease. Inflamm Bowel Dis 2012;18:2270-2276. https://doi.org/10.1002/ibd.22938
  5. Hirschfield GM, Karlsen TH, Lindor KD, Adams DH. Primary sclerosing cholangitis. Lancet 2013;382:1587-1599. https://doi.org/10.1016/S0140-6736(13)60096-3
  6. Lindor KD, Kowdley KV, Harrison ME, American College of Gastroenterology. ACG clinical guideline: primary sclerosing cholangitis. Am J Gastroenterol 2015;110:646-659; quiz 660. https://doi.org/10.1038/ajg.2015.112
  7. Lunder AK, Hov JR, Borthne A, et al. Prevalence of sclerosing cholangitis detected by magnetic resonance cholangiography in patients with long-term inflammatory bowel disease. Gastroenterology 2016;151:660-669.e4. https://doi.org/10.1053/j.gastro.2016.06.021
  8. Ye BD, Yang SK, Boo SJ, et al. Clinical characteristics of ulcerative colitis associated with primary sclerosing cholangitis in Korea. Inflamm Bowel Dis 2011;17:1901-1906. https://doi.org/10.1002/ibd.21569
  9. Yang BR, Choi NK, Kim MS, et al. Prevalence of extraintestinal manifestations in Korean inflammatory bowel disease patients. PLoS One 2018;13:e0200363. https://doi.org/10.1371/journal.pone.0200363
  10. Bergquist A, Lindberg G, Saarinen S, Broome U. Increased prevalence of primary sclerosing cholangitis among first-degree relatives. J Hepatol 2005;42:252-256.
  11. Karlsen TH, Schrumpf E, Boberg KM. Genetic epidemiology of primary sclerosing cholangitis. World J Gastroenterol 2007;13:5421-5431. https://doi.org/10.3748/wjg.v13.i41.5421
  12. Janse M, Lamberts LE, Franke L, et al. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9. Hepatology 2011;53:1977-1985. https://doi.org/10.1002/hep.24307
  13. Bansi DS, Fleming KA, Chapman RW. Importance of antineutrophil cytoplasmic antibodies in primary sclerosing cholangitis and ulcerative colitis: prevalence, titre, and IgG subclass. Gut 1996;38:384-389. https://doi.org/10.1136/gut.38.3.384
  14. Williamson KD, Chapman RW. New therapeutic strategies for primary sclerosing cholangitis. Semin Liver Dis 2016;36:5-14. https://doi.org/10.1055/s-0035-1571274
  15. Tabibian JH, O'Hara SP, Lindor KD. Primary sclerosing cholangitis and the microbiota: current knowledge and perspectives on etiopathogenesis and emerging therapies. Scand J Gastroenterol 2014;49:901-908. https://doi.org/10.3109/00365521.2014.913189
  16. Uko V, Thangada S, Radhakrishnan K. Liver disorders in inflammatory bowel disease. Gastroenterol Res Pract 2012;2012:642923. https://doi.org/10.1155/2012/642923
  17. European Association for the Study of the Liver. EASL clinical practice guidelines: management of cholestatic liver diseases. J Hepatol 2009;51:237-267. https://doi.org/10.1016/j.jhep.2009.04.009
  18. Moff SL, Kamel IR, Eustace J, et al. Diagnosis of primary sclerosing cholangitis: a blinded comparative study using magnetic resonance cholangiography and endoscopic retrograde cholangiography. Gastrointest Endosc 2006;64:219-223. https://doi.org/10.1016/j.gie.2005.12.034
  19. Berstad AE, Aabakken L, Smith HJ, Aasen S, Boberg KM, Schrumpf E. Diagnostic accuracy of magnetic resonance and endoscopic retrograde cholangiography in primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2006;4:514-520. https://doi.org/10.1016/j.cgh.2005.10.007
  20. Chapman R, Fevery J, Kalloo A, et al. Diagnosis and management of primary sclerosing cholangitis. Hepatology 2010;51:660-678. https://doi.org/10.1002/hep.23294
  21. Chazouilleres O, Wendum D. Diseases of the intrahepatic bile duct: diagnosis and principles of treatment. Gastroenterol Clin Biol 2003;27(3 Pt 1):307-318.
  22. Ponsioen CY, Vrouenraets SM, Prawirodirdjo W, et al. Natural history of primary sclerosing cholangitis and prognostic value of cholangiography in a Dutch population. Gut 2002;51:562-566. https://doi.org/10.1136/gut.51.4.562
  23. Ngu JH, Gearry RB, Wright AJ, Stedman CA. Inflammatory bowel disease is associated with poor outcomes of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2011;9:1092-1097; quiz e135. https://doi.org/10.1016/j.cgh.2011.08.027
  24. Yanai H, Matalon S, Rosenblatt A, et al. Prognosis of primary sclerosing cholangitis in israel is independent of coexisting inflammatory bowel disease. J Crohns Colitis 2015;9:177-184. https://doi.org/10.1093/ecco-jcc/jju013
  25. Weismuller TJ, Trivedi PJ, Bergquist A, et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology 2017;152:1975-1984.e8. https://doi.org/10.1053/j.gastro.2017.02.038
  26. Fevery J, Verslype C, Lai G, Aerts R, Van Steenbergen W. Incidence, diagnosis, and therapy of cholangiocarcinoma in patients with primary sclerosing cholangitis. Dig Dis Sci 2007;52:3123-3135. https://doi.org/10.1007/s10620-006-9681-4
  27. Razumilava N, Gores GJ, Lindor KD. Cancer surveillance in patients with primary sclerosing cholangitis. Hepatology 2011;54:1842-1852. https://doi.org/10.1002/hep.24570
  28. Kim WR, Therneau TM, Wiesner RH, et al. A revised natural history model for primary sclerosing cholangitis. Mayo Clin Proc 2000;75:688-694. https://doi.org/10.4065/75.7.688
  29. Corpechot C, Gaouar F, El Naggar A, et al. Baseline values and changes in liver stiffness measured by transient elastography are associated with severity of fibrosis and outcomes of patients with primary sclerosing cholangitis. Gastroenterology 2014;146: 970-979; quiz e15-e16. https://doi.org/10.1053/j.gastro.2013.12.030
  30. Vacca M, Krawczyk M, Petruzzelli M, et al. Current treatments of primary sclerosing cholangitis. Curr Med Chem 2007;14:2081-2094. https://doi.org/10.2174/092986707781368388
  31. Lindor KD. Ursodiol for primary sclerosing cholangitis. Mayo primary sclerosing cholangitis-ursodeoxycholic acid study group. N Engl J Med 1997;336:691-695. https://doi.org/10.1056/NEJM199703063361003
  32. Lindor KD, Kowdley KV, Luketic VA, et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 2009;50:808-814. https://doi.org/10.1002/hep.23082
  33. Gow PJ, Chapman RW. Liver transplantation for primary sclerosing cholangitis. Liver 2000;20:97-103. https://doi.org/10.1034/j.1600-0676.2000.020002097.x
  34. Tamura S, Sugawara Y, Kaneko J, Matsui Y, Togashi J, Makuuchi M. Recurrence of primary sclerosing cholangitis after living donor liver transplantation. Liver Int 2007;27:86-94. https://doi.org/10.1111/j.1478-3231.2006.01395.x
  35. Tse CS, Loftus EV Jr, Raffals LE, Gossard AA, Lightner AL. Effects of vedolizumab, adalimumab and infliximab on biliary inflammation in individuals with primary sclerosing cholangitis and inflammatory bowel disease. Aliment Pharmacol Ther 2018;48:190-195. https://doi.org/10.1111/apt.14829
  36. Joo M, Abreu-e-Lima P, Farraye F, et al. Pathologic features of ulcerative colitis in patients with primary sclerosing cholangitis: a case-control study. Am J Surg Pathol 2009;33:854-862. https://doi.org/10.1097/PAS.0b013e318196d018
  37. Restellini S, Chazouilleres O, Frossard JL. Hepatic manifestations of inflammatory bowel diseases. Liver Int 2017;37:475-489. https://doi.org/10.1111/liv.13265
  38. Navaneethan U, Venkatesh PG, Mukewar S, et al. Progressive primary sclerosing cholangitis requiring liver transplantation is associated with reduced need for colectomy in patients with ulcerative colitis. Clin Gastroenterol Hepatol 2012;10:540-546. https://doi.org/10.1016/j.cgh.2012.01.006
  39. Marelli L, Xirouchakis E, Kalambokis G, Cholongitas E, Hamilton MI, Burroughs AK. Does the severity of primary sclerosing cholangitis influence the clinical course of associated ulcerative colitis? Gut 2011;60:1224-1228. https://doi.org/10.1136/gut.2010.235408
  40. Nordenvall C, Olen O, Nilsson PJ, et al. Colectomy prior to diagnosis of primary sclerosing cholangitis is associated with improved prognosis in a nationwide cohort study of 2594 PSC-IBD patients. Aliment Pharmacol Ther 2018;47:238-245. https://doi.org/10.1111/apt.14393
  41. Hennes EM, Zeniya M, Czaja AJ, et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008;48:169-176. https://doi.org/10.1002/hep.22322
  42. Perdigoto R, Carpenter HA, Czaja AJ. Frequency and significance of chronic ulcerative colitis in severe corticosteroid-treated autoimmune hepatitis. J Hepatol 1992;14:325-331. https://doi.org/10.1016/0168-8278(92)90178-R
  43. DeFilippis EM, Kumar S. Clinical presentation and outcomes of autoimmune hepatitis in inflammatory bowel disease. Dig Dis Sci 2015;60:2873-2880. https://doi.org/10.1007/s10620-015-3699-4
  44. Larrey D. Epidemiology and individual susceptibility to adverse drug reactions affecting the liver. Semin Liver Dis 2002;22:145-155. https://doi.org/10.1055/s-2002-30105
  45. Namias A, Bhalotra R, Donowitz M. Reversible sulfasalazine-induced granulomatous hepatitis. J Clin Gastroenterol 1981;3:193-198. https://doi.org/10.1097/00004836-198106000-00017
  46. Ribe J, Benkov KJ, Thung SN, Shen SC, LeLeiko NS. Fatal massive hepatic necrosis: a probable hypersensitivity reaction to sulfasalazine. Am J Gastroenterol 1986;81:205-208.
  47. Deltenre P, Berson A, Marcellin P, Degott C, Biour M, Pessayre D. Mesalazine (5-aminosalicylic acid) induced chronic hepatitis. Gut 1999;44:886-888. https://doi.org/10.1136/gut.44.6.886
  48. Ransford RA, Langman MJ. Sulphasalazine and mesalazine: serious adverse reactions re-evaluated on the basis of suspected adverse reaction reports to the committee on safety of medicines. Gut 2002;51:536-539. https://doi.org/10.1136/gut.51.4.536
  49. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 2006;43(2 Suppl 1):S99-S112. https://doi.org/10.1002/hep.20973
  50. Gisbert JP, Gonzalez-Lama Y, Mate J. Thiopurine-induced liver injury in patients with inflammatory bowel disease: a systematic review. Am J Gastroenterol 2007;102:1518-1527. https://doi.org/10.1111/j.1572-0241.2007.01187.x
  51. Teml A, Schwab M, Hommes DW, et al. A systematic survey evaluating 6-thioguanine-related hepatotoxicity in patients with inflammatory bowel disease. Wien Klin Wochenschr 2007;119:519-526. https://doi.org/10.1007/s00508-007-0841-0
  52. Bastida G, Nos P, Aguas M, et al. Incidence, risk factors and clinical course of thiopurine-induced liver injury in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2005;22:775-782. https://doi.org/10.1111/j.1365-2036.2005.02636.x
  53. Gisbert JP, Luna M, Gonzalez-Lama Y, et al. Liver injury in inflammatory bowel disease: long-term follow-up study of 786 patients. Inflamm Bowel Dis 2007;13:1106-1114. https://doi.org/10.1002/ibd.20160
  54. Hirten R, Sultan K, Thomas A, Bernstein DE. Hepatic manifestations of non-steroidal inflammatory bowel disease therapy. World J Hepatol 2015;7:2716-2728. https://doi.org/10.4254/wjh.v7.i27.2716
  55. Munnig-Schmidt E, Zhang M, Mulder CJ, Barclay ML. Late-onset rise of 6-MMP metabolites in IBD patients on azathioprine or mercaptopurine. Inflamm Bowel Dis 2018;24:892-896. https://doi.org/10.1093/ibd/izx081
  56. Gardiner SJ, Gearry RB, Burt MJ, Ding SL, Barclay ML. Severe hepatotoxicity with high 6-methylmercaptopurine nucleotide concentrations after thiopurine dose escalation due to low 6-thioguanine nucleotides. Eur J Gastroenterol Hepatol 2008;20:1238-1242. https://doi.org/10.1097/MEG.0b013e3282ffda37
  57. Shaye OA, Yadegari M, Abreu MT, et al. Hepatotoxicity of 6-mercaptopurine (6-MP) and Azathioprine (AZA) in adult IBD patients. Am J Gastroenterol 2007;102:2488-2494. https://doi.org/10.1111/j.1572-0241.2007.01515.x
  58. Dubinsky MC, Yang H, Hassard PV, et al. 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology 2002;122:904-915. https://doi.org/10.1053/gast.2002.32420
  59. Leong RW, Gearry RB, Sparrow MP. Thiopurine hepatotoxicity in inflammatory bowel disease: the role for adding allopurinol. Expert Opin Drug Saf 2008;7:607-616. https://doi.org/10.1517/14740338.7.5.607
  60. Leung Y, Sparrow MP, Schwartz M, Hanauer SB. Long term efficacy and safety of allopurinol and azathioprine or 6-mercaptopurine in patients with inflammatory bowel disease. J Crohns Colitis 2009;3:162-167. https://doi.org/10.1016/j.crohns.2009.02.003
  61. Vernier-Massouille G, Cosnes J, Lemann M, et al. Nodular regenerative hyperplasia in patients with inflammatory bowel disease treated with azathioprine. Gut 2007;56:1404-1409. https://doi.org/10.1136/gut.2006.114363
  62. van Asseldonk DP, Jharap B, Verheij J, et al. The prevalence of nodular regenerative hyperplasia in inflammatory bowel disease patients treated with thioguanine is not associated with clinically significant liver disease. Inflamm Bowel Dis 2016;22:2112-2120. https://doi.org/10.1097/MIB.0000000000000869
  63. Ferlitsch A, Teml A, Reinisch W, et al. 6-thioguanine associated nodular regenerative hyperplasia in patients with inflammatory bowel disease may induce portal hypertension. Am J Gastroenterol 2007;102:2495-2503. https://doi.org/10.1111/j.1572-0241.2007.01530.x
  64. Fournier MR, Klein J, Minuk GY, Bernstein CN. Changes in liver biochemistry during methotrexate use for inflammatory bowel disease. Am J Gastroenterol 2010;105:1620-1626. https://doi.org/10.1038/ajg.2010.21
  65. Miehsler W, Novacek G, Wenzl H, et al. A decade of infliximab: the Austrian evidence based consensus on the safe use of infliximab in inflammatory bowel disease. J Crohns Colitis 2010;4:221-256. https://doi.org/10.1016/j.crohns.2009.12.001
  66. Ghabril M, Bonkovsky HL, Kum C, et al. Liver injury from tumor necrosis factor-${\alpha}$ antagonists: analysis of thirty-four cases. Clin Gastroenterol Hepatol 2013;11:558-564.e3. https://doi.org/10.1016/j.cgh.2012.12.025
  67. Thai A, Prindiville T. Hepatosplenic T-cell lymphoma and inflammatory bowel disease. J Crohns Colitis 2010;4:511-522. https://doi.org/10.1016/j.crohns.2010.05.006
  68. Bloomgren G, Richman S, Hotermans C, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 2012;366:1870-1880. https://doi.org/10.1056/NEJMoa1107829
  69. Antezana A, Sigal S, Herbert J, Kister I. Natalizumab-induced hepatic injury: a case report and review of literature. Mult Scler Relat Disord 2015;4:495-498. https://doi.org/10.1016/j.msard.2015.08.008
  70. Soler D, Chapman T, Yang LL, Wyant T, Egan R, Fedyk ER. The binding specificity and selective antagonism of vedolizumab, an anti-alpha4beta7 integrin therapeutic antibody in development for inflammatory bowel diseases. J Pharmacol Exp Ther 2009;330:864-875. https://doi.org/10.1124/jpet.109.153973
  71. Chevaux JB, Bigard MA, Bensenane M, et al. Inflammatory bowel disease and hepatitis B and C. Gastroenterol Clin Biol 2009;33:1082-1093. https://doi.org/10.1016/j.gcb.2009.03.021
  72. Hoofnagle JH. Reactivation of hepatitis B. Hepatology 2009;49(5 Suppl):S156-S165. https://doi.org/10.1002/hep.22945
  73. Perrillo RP, Gish R, Falck-Ytter YT. American Gastroenterological Association Institute technical review on prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology 2015;148:221-244.e3. https://doi.org/10.1053/j.gastro.2014.10.038
  74. Reddy KR, Beavers KL, Hammond SP, Lim JK, Falck-Ytter YT, American Gastroenterological Association Institute. American Gastroenterological Association Institute guideline on the prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology 2015;148:215-219; quiz e16-e17. https://doi.org/10.1053/j.gastro.2014.10.039
  75. Tur-Kaspa R, Burk RD, Shaul Y, Shafritz DA. Hepatitis B virus DNA contains a glucocorticoid-responsive element. Proc Natl Acad Sci U S A 1986;83:1627-1631. https://doi.org/10.1073/pnas.83.6.1627
  76. Tzeng HT, Tsai HF, Chyuan IT, et al. Tumor necrosis factor-alpha induced by hepatitis B virus core mediating the immune response for hepatitis B viral clearance in mice model. PLoS One 2014;9:e103008. https://doi.org/10.1371/journal.pone.0103008
  77. Chyuan IT, Tsai HF, Tzeng HT, et al. Tumor necrosis factor-alpha blockage therapy impairs hepatitis B viral clearance and enhances T-cell exhaustion in a mouse model. Cell Mol Immunol 2015;12:317-325. https://doi.org/10.1038/cmi.2015.01
  78. Rojas-Feria M, Castro M, Suarez E, Ampuero J, Romero-Gomez M. Hepatobiliary manifestations in inflammatory bowel disease: the gut, the drugs and the liver. World J Gastroenterol 2013;19:7327-7340. https://doi.org/10.3748/wjg.v19.i42.7327
  79. Bessissow T, Le NH, Rollet K, Afif W, Bitton A, Sebastiani G. Incidence and predictors of nonalcoholic fatty liver disease by serum biomarkers in patients with inflammatory bowel disease. Inflamm Bowel Dis 2016;22:1937-1944. https://doi.org/10.1097/MIB.0000000000000832
  80. Principi M, Iannone A, Losurdo G, et al. Nonalcoholic fatty liver disease in inflammatory bowel disease: prevalence and risk factors. Inflamm Bowel Dis 2018;24:1589-1596. https://doi.org/10.1093/ibd/izy051
  81. Sourianarayanane A, Garg G, Smith TH, Butt MI, McCullough AJ, Shen B. Risk factors of non-alcoholic fatty liver disease in patients with inflammatory bowel disease. J Crohns Colitis 2013;7:e279-e285.
  82. Liu TC, Stappenbeck TS. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol 2016;11:127-148. https://doi.org/10.1146/annurev-pathol-012615-044152
  83. Barbuio R, Milanski M, Bertolo MB, Saad MJ, Velloso LA. Infliximab reverses steatosis and improves insulin signal transduction in liver of rats fed a high-fat diet. J Endocrinol 2007;194:539-550. https://doi.org/10.1677/JOE-07-0234
  84. Chao CY, Battat R, Al Khoury A, Restellini S, Sebastiani G, Bessissow T. Co-existence of non-alcoholic fatty liver disease and inflammatory bowel disease: a review article. World J Gastroenterol 2016;22:7727-7734. https://doi.org/10.3748/wjg.v22.i34.7727
  85. Yalcin M, Akarsu M, Celik A, et al. A comparison of the effects of infliximab, adalimumab, and pentoxifylline on rats with non-alcoholic steatohepatitis. Turk J Gastroenterol 2014;25 Suppl 1:167-175. https://doi.org/10.5152/tjg.2014.5121
  86. Fraquelli M, Losco A, Visentin S, et al. Gallstone disease and related risk factors in patients with Crohn disease: analysis of 330 consecutive cases. Arch Intern Med 2001;161:2201-2204. https://doi.org/10.1001/archinte.161.18.2201
  87. Burisch J, Pedersen N, Cukovic-Cavka S, et al. East-West gradient in the incidence of inflammatory bowel disease in Europe: the ECCO-EpiCom inception cohort. Gut 2014;63:588-597. https://doi.org/10.1136/gutjnl-2013-304636
  88. Parente F, Pastore L, Bargiggia S, et al. Incidence and risk factors for gallstones in patients with inflammatory bowel disease: a large case-control study. Hepatology 2007;45:1267-1274. https://doi.org/10.1002/hep.21537
  89. Zhang FM, Xu CF, Shan GD, Chen HT, Xu GQ. Is gallstone disease associated with inflammatory bowel diseases? A meta-analysis. J Dig Dis 2015;16:634-641. https://doi.org/10.1111/1751-2980.12286
  90. Damiao AO, Sipahi AM, Vezozzo DP, Goncalves PL, Fukui P, Laudanna AA. Gallbladder hypokinesia in Crohn's disease. Digestion 1997;58:458-463. https://doi.org/10.1159/000201483
  91. Chew SS, Ngo TQ, Douglas PR, Newstead GL, Selby W, Solomon MJ. Cholecystectomy in patients with Crohn's ileitis. Dis Colon Rectum 2003;46:1484-1488. https://doi.org/10.1007/s10350-004-6798-4
  92. Grainge MJ, West J, Card TR. Venous thromboembolism during active disease and remission in inflammatory bowel disease: a cohort study. Lancet 2010;375:657-663. https://doi.org/10.1016/S0140-6736(09)61963-2
  93. Qu C, Cao J, Liu K, et al. Crohn's disease complicated with extensive thrombosis of limbs and mesenteric arteries: a case report and literature review. Ann Vasc Surg 2019 Feb 23. [Epub ahead of print]
  94. Spina L, Saibeni S, Battaglioli T, Peyvandi F, de Franchis R, Vecchi M. Thrombosis in inflammatory bowel diseases: role of inherited thrombophilia. Am J Gastroenterol 2005;100:2036-2041. https://doi.org/10.1111/j.1572-0241.2005.42029.x
  95. Miehsler W, Reinisch W, Valic E, et al. Is inflammatory bowel disease an independent and disease specific risk factor for thromboembolism? Gut 2004;53:542-548. https://doi.org/10.1136/gut.2003.025411
  96. Alkim H, Koksal AR, Boga S, Sen I, Alkim C. Etiopathogenesis, prevention, and treatment of thromboembolism in inflammatory bowel disease. Clin Appl Thromb Hemost 2017;23:501-510. https://doi.org/10.1177/1076029616632906
  97. Baker ME, Remzi F, Einstein D, et al. CT depiction of portal vein thrombi after creation of ileal pouch-anal anastomosis. Radiology 2003;227:73-79. https://doi.org/10.1148/radiol.2271020032
  98. Baddley JW, Singh D, Correa P, Persich NJ. Crohn's disease presenting as septic thrombophlebitis of the portal vein (pylephlebitis): case report and review of the literature. Am J Gastroenterol 1999;94:847-849. https://doi.org/10.1016/S0002-9270(99)00014-3
  99. Landman C, Nahon S, Cosnes J, et al. Portomesenteric vein thrombosis in patients with inflammatory bowel disease. Inflamm Bowel Dis 2013;19:582-589. https://doi.org/10.1097/MIB.0b013e31827eea5f
  100. Papa A, Gerardi V, Marzo M, Felice C, Rapaccini GL, Gasbarrini A. Venous thromboembolism in patients with inflammatory bowel disease: focus on prevention and treatment. World J Gastroenterol 2014;20:3173-3179. https://doi.org/10.3748/wjg.v20.i12.3173
  101. Lin JN, Lin CL, Lin MC, Lai CH, Lin HH, Kao CH. Pyogenic liver abscess in patients with inflammatory bowel disease: a nationwide cohort study. Liver Int 2016;36:136-144. https://doi.org/10.1111/liv.12875
  102. Bernabeu JL, Leo E, Trigo C, Herrera JM, Sousa JM, Marquez JL. Crohn's disease and liver abscess due to Pediococcus sp. Inflamm Bowel Dis 2011;17:2207-2208. https://doi.org/10.1002/ibd.21622
  103. Wester AL, Vatn MH, Fausa O. Secondary amyloidosis in inflammatory bowel disease: a study of 18 patients admitted to Rikshospitalet University Hospital, Oslo, from 1962 to 1998. Inflamm Bowel Dis 2001;7:295-300. https://doi.org/10.1097/00054725-200111000-00003
  104. Greenstein AJ, Sachar DB, Panday AK, et al. Amyloidosis and inflammatory bowel disease. A 50-year experience with 25 patients. Medicine (Baltimore) 1992;71:261-270. https://doi.org/10.1097/00005792-199209000-00001
  105. Kato T, Komori A, Bae SK, et al. Concurrent systemic AA amyloidosis can discriminate primary sclerosing cholangitis from IgG4-associated cholangitis. World J Gastroenterol 2012;18:192-196. https://doi.org/10.3748/wjg.v18.i2.192
  106. Vassiliadis T, Mpoumponaris A, Giouleme O, et al. Late onset ulcerative colitis complicating a patient with Budd-Chiari syndrome: a case report and review of the literature. Eur J Gastroenterol Hepatol 2009;21:109-113. https://doi.org/10.1097/MEG.0b013e32830263cb

Cited by

  1. Temporal Relationship of Extraintestinal Manifestations in Inflammatory Bowel Disease vol.10, pp.24, 2019, https://doi.org/10.3390/jcm10245984