DOI QR코드

DOI QR Code

Fabrication of Casting Pig Iron from Copper Smelting Slag by Carbothermic Reduction

탄소열환원 반응에 의한 동제련슬래그로부터 주철용 선철 제조 연구

  • Received : 2019.05.31
  • Accepted : 2019.06.20
  • Published : 2019.06.30

Abstract

This study was conducted to fabrication pig iron containing copper and to reduce sulfur content pig iron. Roasting test was conducted for 1 ~ 9 hours at each temperature of $500^{\circ}C$, $700^{\circ}C$, and $900^{\circ}C$. In addition, the effect of oxygen partial pressure with 0.5, 0.8, and 1 atm was carried out for 30 minutes at $900^{\circ}C$. It was found that there is no effect to reduce sulfure in pig iron through roasting and oxygen partial pressures. The addition of CaO with 15 wt.% was found to reduce sulfur content up to 0.001 wt.%. The suitable temperature and reactive time for carbothermic reduction were $1600^{\circ}C$ and 30 minutes which shows the highest recovery rate of iron from the copper slag.

본 연구는 동제련슬래그 내에 존재하는 Fe와 Cu의 동시 환원을 통해 주물용 선철을 제조하고, 선철 제조 시 황 함량 저감에 대한 실험을 진행하였다. Roasting 실험은 실험온도 $500^{\circ}C$, $700^{\circ}C$, $900^{\circ}C$ 온도 조건에서 1시간에서 9시간까지 2시간 간격으로 시간을 변화시키면서 실험을 진행 하였다. 산소분압에 따른 실험은 산소분압 0.5, 0.8, 1.0, 실험 온도는 $900^{\circ}C$, 유지시간 30분으로 설정하여 실험을 진행하였다. 실험 결과 Roasting 및 산소분압에 따른 황 저감의 영향은 없는 것으로 확인되었다. 첨가제로 CaO를 사용하여 첨가량 15 % 이상부터 S 성분 함량은 0.001 wt% 이하로 확인되었다. 반응온도에 따른 선철 및 슬래그 분리 실험의 조건은 $1300^{\circ}C{\sim}1600^{\circ}C$까지의 온도조건에서 유지시간 30분, Ar 가스 분위기에서 진행하였으며, 반응시간에 따른 선철 및 슬래그 분리 실험의 조건은 유지시간 5 ~ 25분까지 5분 간격, 반응온도 $1600^{\circ}C$, Ar가스분위기에서 실험을 진행하였다. 실험 결과 $1600^{\circ}C$, 30분 유지 환원 조건에서 선철의 회수율이 가장 높았다.

Keywords

RSOCB3_2019_v28n3_59_f0001.png 이미지

Fig. 1. XRD patterns and SEM-EDS results of the particle of the copper slag before the reduction reaction.

RSOCB3_2019_v28n3_59_f0002.png 이미지

Fig. 2. Results of desulfurization roasting depending on temperature and time.

RSOCB3_2019_v28n3_59_f0003.png 이미지

Fig. 3. Melting behavior of slag according to reaction temperature. (a) 1300 ℃, (b) 1400 ℃, (c) 1500 ℃, (d) 1600 ℃

RSOCB3_2019_v28n3_59_f0004.png 이미지

Fig. 4. The content of Fe2O3 in the slag according to the reaction time condition

Table 1. Chemical composition of the copper slag used in this study (XRF)

RSOCB3_2019_v28n3_59_t0001.png 이미지

Table 2. Chemical composition of the copper slag used in this study (SEM-EDS)

RSOCB3_2019_v28n3_59_t0002.png 이미지

Table 3. Effect of calculation method of CaO addition

RSOCB3_2019_v28n3_59_t0003.png 이미지

Table 4. Results of desulfurization roasting depending on temperature and time

RSOCB3_2019_v28n3_59_t0004.png 이미지

Table 5. Result of desulfurization by oxygen partial pressure

RSOCB3_2019_v28n3_59_t0005.png 이미지

Table 6. Effect of calculation method of CaO addition

RSOCB3_2019_v28n3_59_t0006.png 이미지

Table 7. Chemical composition of pig iron separated by high temperature reduction melting from copper smelting slag according to reaction temperature condition

RSOCB3_2019_v28n3_59_t0007.png 이미지

Table 8. Chemical composition of slag separated by high temperature reduction melting from copper smelting slag according to reaction temperature condition

RSOCB3_2019_v28n3_59_t0008.png 이미지

Table 9. The components of the pig iron recovered after the high-temperature reduction melting at the reaction time condition of 30 minutes (SEM-EDS)

RSOCB3_2019_v28n3_59_t0009.png 이미지

Table 10. The components of the slag recovered after the high-temperature reduction melting at a reaction time of 30 minutes (SEM-EDS)

RSOCB3_2019_v28n3_59_t0010.png 이미지

Table 11. Chemical composition of slag separated by high temperature reduction melting from copper smelting slag with reaction time condition change (XRF)

RSOCB3_2019_v28n3_59_t0011.png 이미지

References

  1. Ju-Seong Bae, Nam-Wook Kim, and Sang-Hun Ko, 2007 : A Study on the Properties of Concrete Substituting Copper Slag for Fine Aggregate, Journal of the Korea Institute for Structural Maintenance Inspection 11, pp.151-158.
  2. Kwang-Seok Lee, Seul-Ki Jo, Doyun Shin, Soo-Bock Jeong, Jae-chun Lee, and Byung-Su Kim, 2014 : Upgrading of Iron from Waste Copper Slag by A Physicochemical Separation Process, J. of Korean Inst. of Resources Recycling, 23, pp.30-36.
  3. Korea Zinc Co., Ltd., 2012 : Private Communication
  4. LS-Nikko copper inc., 2012 : Private Communication
  5. S. W. Ji and C. H. Seo, 2006 : The application of copper smelting slag as concrete aggregate, J. of the Korean Recycled Construction Resources Institute 2, 68.
  6. Huiting Shen and E. Forssberg, 2003 : An overview of recovery of metals from slag, Waste Managment, 23, pp.933-949. https://doi.org/10.1016/S0956-053X(02)00164-2
  7. Norrgran, D. and Wernham, J., 1991 : Recycling and secondary recovery applications using an eddy-current separator", Miner. Metall. Process. 11, pp.184-187.
  8. Young-Hwan Kim and Jung-Min Yoo, 2016 : A Study on the Reduction of Iron Oxide from Slag in the EAF Process, J. of Korean Inst. of Resources Recycling, 25, pp.54-59. https://doi.org/10.7844/kirr.2016.25.4.54
  9. Yucel, O., Addemir, O., Tekin, A., and Nizamoglu, S., 1992 : Recovery of cobalt from copper slags, Miner. Process. Extr. Metall. Rev. 10(1), pp.93-99.
  10. Agrawal, A., Sahoo, K.L., Ghosh, S., Pandey, B.D., 2007: United states patent 2007/0283785 A1.
  11. Yucel, O., Sahin, F., Sirin, B., and Addemir, O., 1999 : A reduction study of copper slag in DC arc furnace, Scand. J. Metall. 28(3), pp.93-99.
  12. Ke-qing Li, Shuo Ping, Hong-yu Wang, and Wen Ni, 2013 : Recovery of iron from copper slag by deep reduction and magnetic beneficiation, International Journal of Minerals, Metallurgy, and Materials, Volume 20, Issue 11, pp.1035-1041. https://doi.org/10.1007/s12613-013-0831-3
  13. Banza, A., Gock, E., and Kongolo, K., 2002 : Base metals recovery from copper smelter slag by oxidizing leaching and solvent extraction, Hydrometallurgy, 67, pp.63-69, (2002). https://doi.org/10.1016/S0304-386X(02)00138-X
  14. Veasey, T., 1997 : An overview of metals recycling by phisical separation methods, Proc. Inst. Mech. Eng. E J. Process Mech. Eng. 211(1), pp.61-64. https://doi.org/10.1243/0954408971529557
  15. Hino, M., 2011 : Recovery of iron from copper flash smelting slags. Miner. Process, Extr. Metall. (Trans. Inst. Min. Metall. C) 120(1), pp.32-36. https://doi.org/10.1179/037195510X12772935654945
  16. Gyurov, S., Kostova, Y., Klitcheva, G., and Ilinkina, A., 2011 : Themal decomposition of pyro-metallurgical copper slag by oxidation in synthetic air, Waste Manag. Res. 29(2), pp.157-164. https://doi.org/10.1177/0734242X10379495
  17. Takashi Noda, Kohei Taniguchi, and Masaru Fukuda, 2011 : Development and Utility of High Purity Pig Iron on Foundry Material, Journal of Korea Foundry Society, 31(4), pp.175-179. https://doi.org/10.7777/jkfs.2011.31.4.175
  18. Gyurov, S., Kostova, Y., Klitcheva, G., and Ilinkina, A., 2011 : Themal decomposition of pyro-metallurgical copper slag by oxidation in synthetic air, Waste Manag. Res. 29(2), pp.157-164. https://doi.org/10.1177/0734242X10379495