Figure 1. Phylogenetic Analysis of the 18S rDNA of New Tetraselmis sp. Isolates.
Figure 2. Time Profiles of Biomass Concentrations of Tetraselmis sp. Strains at (a) 5°C, (b) 10°C, and (c) 15°C.
Figure 3. Biomass Productivities by the Microalgal Strains and Temperature.
Figure 4. Fatty Acid Contents of the Microalgae at 10°C.
Table 1. Sequences of Primers Used for Amplification of 18S rDNA
Table 2. Fatty Acid Compositions of the Microalgae.
References
- Jay, A., Reidmiller, D.R., Avery, C.W., Barrie, D., DeAngelo, B.J., Dave, A., Dzaugis, M., Kolian, M., Lewis, K.L.M., Reeves, K., and Winner, D. 2018. Overview. In Impacts, Risks, and Adaptation in the United States. Fourth National Climate Assessment. 2, 33-71.
- Jung, S.G., Kim, S.K., Bun, M.S., Cho, Y., Shin, D.W., Kim, Z-H., Lim, S.M., and Lee, C.G. 2016. Comparison of Biomass Productivity of the Microalgae, Tetraselmis sp. KCTC12236BP, in Polyvinyl Chloride Marine Photobioreactor and High Density Polyethylene Marine Photobioreactor. J. Mar. Biosci. Biotechnol. 8, 18-23. https://doi.org/10.15433/ksmb.2016.8.1.018
- Kalghatgi, G. 2018. Is it really the end of internal combustion engines and petroleum in transport? Appl. Energ. 225, 965-974 https://doi.org/10.1016/j.apenergy.2018.05.076
- Kim, C.W. and Hur, S.B. 1998. Selection of Optimum Species of Tetraselmis for Mass Culture. J. Aquaculture. 11, 231-240.
- Park, H., Jung, D., Lee, J., Kim, P., Cho, Y., Jung, I., Kim, Z.H., Lim, S.M. and Lee, C.G. 2018. Improvement of biomass and fatty acid productivity in ocean cultivation of Tetraselmis sp. using hypersaline medium. J. Appl. Phycol. 30, 2725-2735. https://doi.org/10.1007/s10811-018-1388-3
- Park, H., Lee C.G. 2016. Theoretical calculations on the feasibility of microalgal biofuels: utilization of marine resources could help realizing the potential of microalgae. Biotechnol. J. 11, 1461-1470. https://doi.org/10.1002/biot.201600041
- Popp, J., Lakner, Z., Harangi-Rakos, M. and Fari, M. 2014. The effect of bioenergy expansion: food, energy, and environment. Renew. and Sust. Energ. Rev. 32, 559-578. https://doi.org/10.1016/j.rser.2014.01.056
- Sakamoto, T. and Murata, N. 2002. Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr. Opin. Microbiol. 5, 206-210. https://doi.org/10.1016/S1369-5274(02)00306-5
- Shin, D.W., Bae, J.H., Cho, Y.H., Kim, Z-H., Lim, S.M., and Lee, C.G. 2016. Isolation of New Microalga, Tetraselmis sp. KCTC12236BP, and Biodiesel Production using Its Biomass. J. Mar. Biosci. Biotechnol. 8, 39-44. https://doi.org/10.15433/ksmb.2016.8.1.039
- Teoh, M.L., Chu, W.L., Marchant, H. and Phang, S.M. 2004. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 16, 421-430. https://doi.org/10.1007/s10811-004-5502-3
Cited by
- Year-Round Cultivation of Tetraselmis sp. for Essential Lipid Production in a Semi-Open Raceway System vol.19, pp.6, 2021, https://doi.org/10.3390/md19060314