Figure 1. Morphological analysis (A) optical microscope and (B) electron microscope images
Figure 2. Optimization of culture condition (A) light intensity (B) temperature
Figure 3. Cultivation under various silicate concentration (A) cell density (B) specific growth rate and generation time and (C) final cell density and biomass productivity
Figure 4. Lipid analysis of Achnanthidium sp. BS-001 (A) total lipid content, (B) nile red staining and (C) FAME composition
Figure 5. Pigment analysis of Achnanthidium sp. (A) pigmen ts composition and (B) carotenoid composition
Table 1. Comparion of SFA, MUFA, and omerga fatty acids with other marine microalgae
Table 2. Summary of biomass, omega-3 fatty acid and Fucoxanthin productivity
Table 3. Comparison of total carotenoids and fucoxanthin content with other diatoms
References
- Adarme-Vega, T.C., Thomas-Hall, S.R., Lim, D.K.Y. & Schenk, P.M. 2014. Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp. Mar. Drugs. 12, 3381-98. https://doi.org/10.3390/md12063381
- Blich, E.G. & Dyer, W.J. 1959. Canadian Journal of Biochemistry and Physiology. Can. J. Biochem. Physiol. 37, 911-7. https://doi.org/10.1139/y59-099
- Cho, D.H., Choi, J.W., Kang, Z., Kim, B.H., Oh, H.M., Kim, H.S. & Ramanan, R. 2017. Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater. Sci. Rep. 7, 1-11. https://doi.org/10.1038/s41598-016-0028-x
- Delbrut, A., Albina, P., Lapierre, T., Pradelles, R. & Dubreucq, E. 2018. Fucoxanthin and polyunsaturated fatty acids co-extraction by a green process. Molecules. 23, 1-15.
- Dyall, S.C. 2015. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 7, 1-15. https://doi.org/10.3389/fnagi.2015.00001
- Foo, S.C., Yusoff, F.M., Ismail, M., Basri, M., Yau, S.K., Khong, N.M.H., Chan, K.W. et al. 2017. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J. Biotechnol. 241, 175-83. https://doi.org/10.1016/j.jbiotec.2016.11.026
- Garcia, J.L., de Vicente, M. & Galan, B. 2017. Microalgae, old sustainable food and fashion nutraceuticals. Microb. Biotechnol. 10, 1017-24. https://doi.org/10.1111/1751-7915.12800
- Gyeongje J. 2012. Algal flora of Korea. In: National Institute of Biological Resources (eds), Freshwater Diatoms V. vol 3 no. 7, National Institute of Biological Resources : Ministry of Environment, pp 13-15
- Heo, J., Cho, D.H., Ramanan, R., Oh, H.M. & Kim, H.S. 2015. PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO2 sequestration. Biochem. Eng. J. 103, 193-7. https://doi.org/10.1016/j.bej.2015.07.013
- Heo, J., Shin, D.S., Cho, K., Cho, D.H., Lee, Y.J. & Kim, H.S. 2018. Indigenous microalga Parachlorella sp. JD-076 as a potential source for lutein production: Optimization of lutein productivity via regulation of light intensity and carbon source. Algal Res.
- Mahabaleshwar V. Hegde, Anand Arvind Zanwar, Sharad P. Adekar. 2016. Omega-3 Fatty Acids: Keys to Nutritional Health, Humana Press, pp 109.
- Kim, S.M., Jung, Y.J., Kwon, O.N., Cha, K.H., Um, B.H., Chung, D. & Pan, C.H. 2012a. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl. Biochem. Biotechnol. 166, 1843-55. https://doi.org/10.1007/s12010-012-9602-2
- Kim, S.M., Kang, S.W., Kwon, O.N., Chung, D. & Pan, C.H. 2012b. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application. J. Korean Soc. Appl. Biol. Chem. 55, 477-83. https://doi.org/10.1007/s13765-012-2108-3
- Peng, J., Yuan, J.P., Wu, C.F. & Wang, J.H. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs. 9, 1806-28. https://doi.org/10.3390/md9101806
- Opinion, S. 2010. Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 8, 1-107
- Sasser, M. 1987. Identification of bacteria by gas chromatography. Forum Mikrobiol. 10, 341-3.
- Simopoulos, A.P. 2003. Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. World Rev. Nutr. Diet. 92, 1-22. https://doi.org/10.1159/000073788
- Tsai, H.P., Chuang, L. Te & Chen, C.N.N. 2016. Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3. Food Chem. 192, 682-90. https://doi.org/10.1016/j.foodchem.2015.07.071
- Velasco, L.A., Carrera, S. & Barros, J. 2016. Isolation, culture and evaluation of Chaetoceros muelleri from the Caribbean as food for the native scallops, Argopecten nucleus and Nodipecten nodosus. Lat. Am. J. Aquat. Res. 44, 557-68. https://doi.org/10.3856/vol44-issue3-fulltext-14
- Ward, O.P. & Singh, A. 2005. Omega-3/6 fatty acids: Alternative sources of production. Process Biochem. 40, 3627-52. https://doi.org/10.1016/j.procbio.2005.02.020
- Xia, S., Wang, K., Wan, L., Li, A., Hu, Q. & Zhang, C. 2013. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom odontella aurita. Mar. Drugs. 11, 2667-81. https://doi.org/10.3390/md11072667
- Zhang, J., Sun, Z., Sun, P., Chen, T. & Chen, F. 2014. Microalgal carotenoids: Beneficial effects and potential in human health. Food Funct. 5, 413-25. https://doi.org/10.1039/c3fo60607d