DOI QR코드

DOI QR Code

R&D Trends of Brown Algae as Potential Candidates in Biomedical Application

  • Kim, Tae-Hee (Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University) ;
  • Jung, Won-Kyo (Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University)
  • 투고 : 2019.05.25
  • 심사 : 2019.06.25
  • 발행 : 2019.06.30

초록

Seaweeds contain various bioactive compounds. Especially, brown algae (Phaeophyceae), the second abundant group of seaweeds, contain numerous nutraceutical and pharmaceutical substances. In this review, we investigated on the brown algae-related patents and literature. Consequently, the research and development (R&D) trends of patent related to brown algae showed that the large majority was applied as the composition of stem cell culture medium and mostly used as active substances. In conclusion, we suggested that many researchers try to investigate and develop applications of brown algae as the sophisticated-level biomedical materials because brown algae are actively developing as simple-level biomedical materials.

키워드

HGHBBQ_2019_v11n1_1_f0001.png 이미지

Figure 1. R&D trends of brown algae in biomedical application. The number of valid patents was calculated by considering the redundant patents. (A) Number and percentage of applied patents using brown algae in biomedical application. (B) The number of patents using brown algae as medical material according to filing year.

Table 1. Brown algae-derived bioactive compounds

HGHBBQ_2019_v11n1_1_t0001.png 이미지

Table 2. Research information for patent database

HGHBBQ_2019_v11n1_1_t0002.png 이미지

Table 3. Search formula and scientific names

HGHBBQ_2019_v11n1_1_t0003.png 이미지

Table 3. Search formula and scientific names (continued)

HGHBBQ_2019_v11n1_1_t0004.png 이미지

Table 4. Analysis of species. The number of (A) species and (B) patents

HGHBBQ_2019_v11n1_1_t0005.png 이미지

Table 5. Biomedical applications and number of patents

HGHBBQ_2019_v11n1_1_t0006.png 이미지

Table 5. Biomedical applications and number of patents (continued)

HGHBBQ_2019_v11n1_1_t0007.png 이미지

참고문헌

  1. Ahmed A. B. A, Adel M., Karimi P. and Peidayesh M. 2014. Pharmaceutical, cosmeceutical, and traditional applications of marine carbohydrates. Adv. Food Nutr. Res. 73, 197-220. https://doi.org/10.1016/B978-0-12-800268-1.00010-X
  2. Ahn G. N., Kim K. N., Cha S. H., Song C. B., Lee J. H., Heo M. S., Yeo I. K., Lee N. H., Jee Y. H., Kim J. S. Heu M. S. and Jeon Y. J. 2007. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and $H_2O_2$-mediated DNA damage. Euro. Food Res. Technol. 226, 71-79. https://doi.org/10.1007/s00217-006-0510-y
  3. Aikawa K., Fujita M. and Toda Satoru. 2005. EP patent 1690928.
  4. Aikawa K., Fujita M. and Toda Satoru. 2005. JP patent 2006223102.
  5. Aikawa K., Fujita M. and Toda Satoru. 2005. JP patent 2006223103.
  6. Aikawa K., Kato A., Matsuura M. and Tsuzuki H. 2002. JP patent 2004033136.
  7. Balboa E. M., Conde E., Moure A., Falque E. and Domínguez H. 2013. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem. 138, 1764-1785. https://doi.org/10.1016/j.foodchem.2012.11.026
  8. Bandai Y., Hizuka M., Nagatomi K., Saeki K. and Tanisaka K. 2002. JP patent 2003327599.
  9. Chandika P, Ko S. C., Oh G. W., Heo S. Y., Nguyen V. T., Jeon Y. J., Lee B. G., Jang C. H., Kim G. H., Park W. S., Chang W.S., Choi I. W. and Jung. W. K. 2015. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. Int. J. Biol. Macromol. 81, 504-513. https://doi.org/10.1016/j.ijbiomac.2015.08.038
  10. Chandika P., Ko S. C. and Jung W.K. 2015. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int. J. Biol. Macromol. 77, 24-35. https://doi.org/10.1016/j.ijbiomac.2015.02.050
  11. Cho Y. S., Jung W. K., Kim J. A., Choi I. W. and Kim S. K. 2009. Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chem. 116, 990-994. https://doi.org/10.1016/j.foodchem.2009.03.051
  12. Choi J. I., Kim H. J. and Lee J. W. 2011. Structural feature and antioxidant activity of low molecular weight laminarin degraded by gamma irradiation. Food Chem. 129, 520-523. https://doi.org/10.1016/j.foodchem.2011.03.078
  13. Choi J. S. and Joo C. K. 2013. Wakayama symposium: new therapies for modulation of epithelialization in corneal wound healing. Ocul. Surf. 11, 16-18. https://doi.org/10.1016/j.jtos.2012.08.006
  14. Chung T. W., Choi H. J., Lee J. Y., Jeong H. S., Kim C. H., Joo M. S., Choi J. Y., Han C. W., Kim S. Y., Choi J. S. and Ha K. T. 2013. Marine algal fucoxanthin inhibits the metastatic potential of cancer cells. Biochem. Biophys. Res. Commun. 439, 580-585. https://doi.org/10.1016/j.bbrc.2013.09.019
  15. Custodio C. A., Reis R. L. and Mano J. F. 2016 Photo-cross-linked laminarin-based hydrogels for biomedical applications. Biomacromol. 17, 1602-1609. https://doi.org/10.1021/acs.biomac.5b01736
  16. Davis T. A., Volesky B. and Mucci A. 2003. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37, 4311-4330. https://doi.org/10.1016/S0043-1354(03)00293-8
  17. Dragar C., Fitton J. H., Gardiner V. A., Stringer D. and Karpiniec S. 2013. US patent 20150359828.
  18. Drapeau C. and Jensen G. S. 2011. US patent 20130108587.
  19. Drapeau C. and Jensen G. S. 2012. US patent 9327003.
  20. Drapeau C. and Jensen G. S. 2013. US patent 10159705.
  21. Drapeau C. and Jensen G. S. 2014. US patent 20160136225.
  22. Drapeau C. and Jensen G. S. 2016 US patent 20130108587.
  23. Fuks L., Filipiuk D. and Majdan M. 2006. Transition metal complexes with alginate biosorbent. J. Mol. Struct. 792, 104-109. https://doi.org/10.1016/j.molstruc.2005.12.053
  24. Gao Y., Li C., Yin J., Shen J., Wang H., Wu Y. and Jin H. 2012. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of $A{\beta}$ peptide in rats. Environ. Toxicol. Pharmacol. 33, 304-311. https://doi.org/10.1016/j.etap.2011.12.022
  25. Goto M., Imoto T., Kashino T., Iwama T. and Miyachi N. 2011. US patent 9480772.
  26. Gupta S. and Abu-Ghannam N. 2011. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 22, 315-326. https://doi.org/10.1016/j.tifs.2011.03.011
  27. Hara M., Miyake J. and Miyake A. 1999. US patent 6821107.
  28. Heo S. J., Ko S. C., Cha S. H., Kang D. H., Park H. S., Choi Y. U., Kim D. K., Jung W. K. and Jeon Y. J. 2009. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol. Vitro. 23, 1123-1130. https://doi.org/10.1016/j.tiv.2009.05.013
  29. Heo S. J., Yoon W. J., Kim K. N., Ahn G. N., Kang S. M., Kang D. H., affan A., Oh C. H., Jung W. K. and Jeon Y. J. 2010. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 48, 2045-2051. https://doi.org/10.1016/j.fct.2010.05.003
  30. Heo S. Y., Ko S. C., Nam S. Y., Oh J. H., Kim Y. M., Kim J. I., Kim N. W., Yi M. G and Jung W. K. 2018a Fish bone peptide promotes osteogenic differentiation of MC3T3-E1 pre-osteoblasts through upregulation of MAPKs and Smad pathways activated BMP-2 receptor. Cell Biochem. Func. 36, 137-146. https://doi.org/10.1002/cbf.3325
  31. Heo S. Y., Ko S. C., Oh G. W., Kim N. W., Choi I. W., Park W. S. and Jung W. K. 2018. Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration. J Biomed. Mater. Res. Part B.
  32. Holdt S. L. and Kraan S. 2011. Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol. 23, 543-597. https://doi.org/10.1007/s10811-010-9632-5
  33. Hosokawa M., Miyashita T., Nishikawa S., Emi S., Tsukui T., Beppu F., Okada T. and Miyashita K. 2010. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Arch. Biochem. Biophys. 504, 17-25. https://doi.org/10.1016/j.abb.2010.05.031
  34. Hunt N. C., Smith A. M., Gbureck U., Shelton R. M. and Grover L. M. 2010. Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation. Acta Biomater. 6, 3649-3656. https://doi.org/10.1016/j.actbio.2010.03.026
  35. Im J. H., Choi C. H., Mun F., Lee J. H., Kim J. H., Jung W. K., Jang C. H. and Kim G. H. 2017. A polycaprolactone/fish collagen/alginate biocomposite supplemented with phlorotannin for hard tissue regeneration. RSC Adv. 7, 2009-2018. https://doi.org/10.1039/C6RA25182J
  36. Iwasaki N., Minami A., Kasahara Y., Igarashi T., Kawamura D., Kasahara F., Miyajima C., Ohzawa N. and Imai M. 2008. EP patent 2210621.
  37. Iwasaki N., Minami A., Kasahara Y., Igarashi T., Kawamura D., Kasahara F., Miyajima C., Ohzawa N. and Imai M. 2008. US patent 8372394.
  38. Iwasaki N., Sukegawa A., Minami A. and Ohzawa N. 2013. US patent 20160067309.
  39. Jeon Y. J., Lee J. H. and Ko J. Y. 2015. KR patent 101725758.
  40. Ji C. F., Ji Y. B. and Meng D. Y. 2013. Sulfated modification and anti‑tumor activity of laminarin. Exp. Ther. Med. 6, 1259-1264. https://doi.org/10.3892/etm.2013.1277
  41. Jia J., Richards D. J., Pollard S., Tan Y., Rodriguez J., Visconti R. P., Trusk T. C., Yost M. J., Yao H., Markwald R. R. and Mei Y. 2014. Engineering alginate as bioink for bioprinting. Acta Biomater. 10, 4323-4331. https://doi.org/10.1016/j.actbio.2014.06.034
  42. Jin J. O., Zhang W., Du J. Y., Wong K. W., Oda T. and Yu Q. 2014. Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses. PLoS One. 9, e99396. https://doi.org/10.1371/journal.pone.0099396
  43. Jung W. K., Heo S. J., Jeon Y. J., Lee C. M., Park Y. M., Byun H. G., Choi Y. H., Park S. G. and Choi I. W. 2009. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J. Agric. Food Chem. 57, 4439-4446. https://doi.org/10.1021/jf9003913
  44. Kadam S. U., Tiwari B. K. and O'donnell C. P. 2015. Extraction, structure and biofunctional activities of laminarin from brown algae. Int. J. Food. Sci. Technol. 50, 24-31. https://doi.org/10.1111/ijfs.12692
  45. Kato A. and Toda S. 2005. JP patent 2005318887.
  46. Kato A., Toda S. and Hirohiko. 2002. JP patent 2004254608.
  47. Kim E. J., Park S. Y., Lee J. Y. and Park J. H. Y. 2010. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 10, 96 https://doi.org/10.1186/1471-230X-10-96
  48. Kim K. N., Ahn G.N., Heo S. J., Kang S. M., Kang M. C., Yang H. M., Kim D. K., Roh S. W., Kim S. K., Jeon B. T., Park P. J., Jung. W. K. and Jeon Y. J. 2013. Inhibition of tumor growth in vitro and in vivo by fucoxanthin against melanoma B16F10 cells. Environ. Toxico. Pharmacol. 35, 39-46. https://doi.org/10.1016/j.etap.2012.10.002
  49. Kumar S. R., Hosokawa M. and Miyashita K. 2013. Fucoxanthin: A marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar. Drugs. 11, 5130-5147. https://doi.org/10.3390/md11125130
  50. Kwak J. Y. 2014. Fucoidan as a marine anticancer agent in preclinical development. Mar. Drugs. 12, 851-870. https://doi.org/10.3390/md12020851
  51. Kwon O. H. and Lee S. W. 2014. KR patent 101678402.
  52. Lee K. Y. and Mooney D. J. 2012. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106-126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
  53. Lee S. H, Park M. H., Kang S. M., Ko S. C., Kang M. C., Cho S. M., Park P. J., Jeon B. T., Kim S. K., Han J. S. and Jeon Y. J. 2012. Dieckol isolated from Ecklonia cava protects against high-glucose induced damage to rat insulinoma cells by reducing oxidative stress and apoptosis. Biosci. Biotechnol. Biochem. 76, 1445-1451. https://doi.org/10.1271/bbb.120096
  54. Lee S. H. and Jeon Y. J. 2013. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia. 86, 129-136. https://doi.org/10.1016/j.fitote.2013.02.013
  55. Lee S. Y., Jung W. J. and Lee K. H. 2013. KR patent 101538969.
  56. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2013. KR patent 101544195.
  57. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2013. US patent 20160230146.
  58. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2013. US patent 20160257935.
  59. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2013. US patent 20160257936.
  60. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2013. US patent 20160272936.
  61. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2013. US patent 20160272939.
  62. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2013. US patent 20160272942.
  63. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2014. KR patent 101592401.
  64. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2014. KR patent 101633019.
  65. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2014. KR patent 101671879.
  66. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2014. KR patent 101671880.
  67. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2014. KR patent 101671881.
  68. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2014. KR patent 101671882.
  69. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2014. KR patent 101671884.
  70. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2014. KR patent 101671884.
  71. Lee S. Y., Jung W. J., Kim H. B., Oh M. S. and Lee K. H. 2015. KR patent 101699761.
  72. Li C., Gao Y., Xing Y., Zhu H., Shen J. and Tian J. 2011. Fucoidan, a sulfated polysaccharide from brown algae, against myocardial ischemia-reperfusion injury in rats via regulating the inflammation response. Food Chem. Toxicol. 49, 2090-2095. https://doi.org/10.1016/j.fct.2011.05.022
  73. Li Y. X., Wijesekara I., Li Y. and Kim S. K. 2011. Phlorotannins as bioactive agents from brown algae. Process Biochem. 46, 2219-2224. https://doi.org/10.1016/j.procbio.2011.09.015
  74. Lordan S., Ross R. P. and Stanton C. 2011. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar. Drugs. 9, 1056-1100. https://doi.org/10.3390/md9061056
  75. Lynch M. B., Sweeney T., Callan J. J., O'Sullivan J. T. and O'Doherty J. V. O. 2010. The effect of dietary Laminaria derived laminarin and fucoidan on intestinal microflora and volatile fatty acid concentration in pigs. Livest. Sci. 133, 157-160. https://doi.org/10.1016/j.livsci.2010.06.052
  76. Manne B. K., Getz T. M., Hughes C. E., Alshehri O., Dangelmaier C., Naik U. P., Watson S. P. and Kunapuli S. P. 2013. Fucoidan is a novel platelet agonist for the C-type lectin-like receptor 2 (CLEC-2). J. Biol. Chem. 288, 7717-7726. https://doi.org/10.1074/jbc.M112.424473
  77. Markstedt K., Mantas A., Tournier I., Martínez avila H., Hagg D. and Gatenholm P. 2015. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromol. 16, 1489-1496. https://doi.org/10.1021/acs.biomac.5b00188
  78. Matsuura Mi. and Tsuzuki H. 2002. JP patent 2003259862.
  79. McDonnell P., Figat S. and O'Doherty J. 2010. The effect of dietary laminarin and fucoidan in the diet of the weanling piglet on performance, selected faecal microbial populations and volatile fatty acid concentrations. Animal. 4, 579-585. https://doi.org/10.1017/S1751731109991376
  80. Michalak I., Chojnacka K. 2015. Algae as production systems of bioactive compounds. Eng. Life Sci. 15, 160-176. https://doi.org/10.1002/elsc.201400191
  81. Minami S., Okamoto Y. and Miki Y. 2014. US patent 9539280.
  82. Miyashita K., Nishikawa S., Beppu F., Tsukui T., Abe M. and Hosokawa M. 2011. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J. Sci. Food Agric. 91, 1166-1174. https://doi.org/10.1002/jsfa.4353
  83. Moroney N. C., O'Grady M. N., Lordan S., Stanton C. and Kerry J. P. 2015. Seaweed polysaccharides (laminarin and fucoidan) as functional ingredients in pork meat: An evaluation of anti-oxidative potential, thermal stability and bioaccessibility. Mar. Drugs. 13, 2447-2464. https://doi.org/10.3390/md13042447
  84. Moroney N. C., O'Grady M. N., O'Doherty J. V. and Kerry J. P. 2012. Addition of seaweed (Laminaria digitata) extracts containing laminarin and fucoidan to porcine diets: Influence on the quality and shelf-life of fresh pork. Meat. Sci. 92 (4):423-429. https://doi.org/10.1016/j.meatsci.2012.05.005
  85. Moroney N. C., O'Grady M. N., O'Doherty J. V. and Kerry J. P. 2013. Effect of a brown seaweed (Laminaria digitata) extract containing laminarin and fucoidan on the quality and shelf-life of fresh and cooked minced pork patties. Meat Sci. 94, 304-311. https://doi.org/10.1016/j.meatsci.2013.02.010
  86. Nakayama E. and Sugawara M. 2012. US patent 20180000136.
  87. Nakayama E. and Sugawara M. 2012. US patent 20180000136.
  88. Nakayama E. and Sugawara M. 2013. JP patent 5970456.
  89. Oh G. W., Ko S. C., Je J. Y., Kim Y. M., Oh J. H. and Jung W. K. 2016. Fabrication, characterization and determination of biological activities of poly ($\epsilon$-caprolactone)/chitosan-caffeic acid composite fibrous mat for wound dressing application. Int. J. Biol. Macromol. 93, 1549-1558. https://doi.org/10.1016/j.ijbiomac.2016.06.065
  90. Pack S. P. and Ki M. R. 2012. US patent 9404097.
  91. Pangestuti R. and Kim S. K. 2011. Biological activities and health benefit effects of natural pigments derived from marine algae. J. Func. Food. 3, 255-266. https://doi.org/10.1016/j.jff.2011.07.001
  92. Park H. H., Ko S. C., Oh G. W., Heo S. J., Kang D. H., Bae S. Y. and Jung W. K. 2018. Fabrication and characterization of phlorotannins/poly (vinyl alcohol) hydrogel for wound healing application. J. Biomat. Sci-Polym. Ed. 29, 972-983. https://doi.org/10.1080/09205063.2017.1374030
  93. Park H. H., Ko S. C., Oh G. W., Jang Y. M., Kim Y. M., Park W. S., Choi I. W. and Jung W. K. 2018b. Characterization and biological activity of PVA hydrogel containing chitooligosaccharides conjugated with gallic acid. Carbohyd. Polym. 198, 197-205. https://doi.org/10.1016/j.carbpol.2018.06.070
  94. Pawar S. N. and Edgar K. J. 2012. Alginate derivatization: a review of chemistry, properties and applications. Biomat. 33, 3279-3305. https://doi.org/10.1016/j.biomaterials.2012.01.007
  95. Peng C., Zhao Q. and Gao C. 2010. Sustained delivery of doxorubicin by porous $CaCO_3$ and chitosan/alginate multiayers-coated $CaCO_3$ microparticles. Colloid Surf. A-Physicochem. Eng. Asp. 353, 132-139. https://doi.org/10.1016/j.colsurfa.2009.11.004
  96. Pereira L., Gheda S. F. and Ribeiro-Claro P. J. 2013. Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int. J. Carbohyd. Chem. 2013.
  97. Popa E. G., Gomes M. E. and Reis R. L. 2011. Cell delivery systems using alginate-carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromol. 12, 3952-3961. https://doi.org/10.1021/bm200965x
  98. Ren X., Liu L., Zhou Y., Zhu Y., Zhang H., Zhang Z. and Li H. 2015. Nanoparticle siRNA against BMI-1 with a polyethylenimine-laminarin conjugate for gene therapy in human breast cancer. Bioconjugate. Chem. 27, 66-73.
  99. Rengarajan T., Rajendran P., Nandakumar N., Balasubramanian M. P. and Nishigaki I. 2013. Cancer preventive efficacy of marine carotenoid fucoxanthin: cell cycle arrest and apoptosis. Nutrients. 5, 4978-4989. https://doi.org/10.3390/nu5124978
  100. Ryu D. S., Baek G. O., Kim E. Y., Kim K. H. and Lee D. S. 2010. Effects of polysaccharides derived from Orostachys japonicus on induction of cell cycle arrest and apoptotic cell death in human colon cancer cells. BMB Rep. 43, 750-755. https://doi.org/10.5483/BMBRep.2010.43.11.750
  101. Sagawa H., Ideno M. and Kato I. 2003. US patent 20080166325.
  102. Sanjeewa K. K. A., Lee W. W., Kim J. I. and Jeon Y. J. 2017. Exploiting biological activities of brown seaweed Ishige okamurae Yendo for potential industrial applications: a review. J. Appl. Phycol. 29, 3109-3119. https://doi.org/10.1007/s10811-017-1213-4
  103. Seo M. J., Seo Y. J., Pan C. H., Lee O. H., Kim K. J. and Lee B. Y. 2016. Fucoxanthin suppresses lipid accumulation and ROS production during differentiation in 3T3-L1 adipocytes. Phytother. Res. 30, 1802-1808. https://doi.org/10.1002/ptr.5683
  104. Sharma S., Sanpui P., Chattopadhyay A. and Ghosh S. S. 2012. Fabrication of antibacterial silver nanoparticle-sodium alginate-chitosan composite films. RSC Adv. 2, 5837-5843. https://doi.org/10.1039/c2ra00006g
  105. Shin D. J. 2014. KR patent 101534276.
  106. Shin T., Ahn M., Hyun J. W., Kim S. H. and Moon C. J. 2014. Antioxidant marine algae phlorotannins and radioprotection: A review of experimental evidence. Acta Histochem. 116, 669-674. https://doi.org/10.1016/j.acthis.2014.03.008
  107. Silva T. H., Alves A., Ferreira B. M., Oliveira J. M., Reys L. L., Ferreira R. J. F., Sousa R. A., Silva S. S., Mano J. F. and Reis R. L. 2012. Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int. Mat. Rev. 57, 276-306. https://doi.org/10.1179/1743280412Y.0000000002
  108. Stadnik M. J. and Freitas M. B. d. 2014. Algal polysaccharides as source of plant resistance inducers. Trop. Plant. Pathol. 39, 111-118. https://doi.org/10.1590/S1982-56762014000200001
  109. Synytsya A., Kim W. J., Kim S. M., Pohl R., Synytsya A., Kvasnicka F., Copikova J. and Park Y. I. 2010. Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohyd. Polym. 81, 41-48. https://doi.org/10.1016/j.carbpol.2010.01.052
  110. Takahashi Y. 2009. US patent 8399014.
  111. Thu H. E, Zulfakar M. H. and Ng S. F. 2012. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int. J. Pharm. 434, 375-383. https://doi.org/10.1016/j.ijpharm.2012.05.044
  112. Toda S. 2005. JP patent 2006238841.
  113. Toda S. 2005. JP patent 2007174989.
  114. Toda S. 2006. JP patent 2006246883.
  115. Toda S. 2006. JP patent 2007215519.
  116. Toda S. 2006. JP patent 2007259735.
  117. Toda S. 2006. JP patent 2007259776.
  118. Torres F. A. E., Passalacqua T. G., Velasquez A. M. A., de Souza R. A., Colepicolo P. and Graminha M. A. S. 2014. New drugs with antiprotozoal activity from marine algae: a review. Rev. Bras. Farmacogn-Braz. J. 24, 265-276. https://doi.org/10.1016/j.bjp.2014.07.001
  119. Tsuzuki H., Aikawa K. and Matsuura A. 2002. JP patent 4262465.
  120. Urikura I., Sugawara T. and Hirata T. 2011.
  121. Venkatesan J., Bhatnagar I. and Kim S. K. 2014. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar. Drugs. 12, 300-316. https://doi.org/10.3390/md12010300
  122. Wang H. M. D., Chen C. C., Huynh P. and Chang J. S. 2015. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 184, 355-362. https://doi.org/10.1016/j.biortech.2014.12.001
  123. Wang H. M. D., Li X. C., Lee D. J. and Chang J. S. 2017. Potential biomedical applications of marine algae. Bioresour. Technol. 244, 1407-1415. https://doi.org/10.1016/j.biortech.2017.05.198
  124. Wang J., Zhang Q., Zhang Z., Song H. and Li P. 2010. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 46, 6-12. https://doi.org/10.1016/j.ijbiomac.2009.10.015
  125. Wichchukit S., Oztop M. H., McCarthy M. J. and McCarthy K. L. 2013. Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocolloids. 33, 66-73. https://doi.org/10.1016/j.foodhyd.2013.02.013
  126. Widner W., Sloma A., Thomas M. and Tang M. 2005. US patent 20050221446.
  127. Wijesekara I., Pangestuti R. and Kim S. K. 2011.
  128. Wijesekara I., Pangestuti R. and Kim S. K. 2011. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohyd. Polym. 84, 14-21. https://doi.org/10.1016/j.carbpol.2010.10.062
  129. Wijesinghe W. and Jeon Y. J. 2011. Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: a review. Phytochem. Rev. 10, 431-443. https://doi.org/10.1007/s11101-011-9214-4
  130. Yanagihara F., Matsuo K. and Kusano M. 2012. US patent 20140134679.
  131. Yanagihara Y. 2012. JP patent 2013147642.
  132. Yoshiko S. and Hoyoku N. 2007. Fucoxanthin, a natural carotenoid, induces G1 arrest and GADD45 gene expression in human cancer cells. In Vivo. 21, 305-309.
  133. Yu J., Du K. T., Fang Q., Gu Y., Mihardja S. S., Sievers R. E., Wu J. C. and Lee R. J. 2010. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomat. 31, 7012-7020. https://doi.org/10.1016/j.biomaterials.2010.05.078
  134. Zhao Y., Li Y., Mao S., Sun W. and Yao R. 2015. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication. 7, 045002. https://doi.org/10.1088/1758-5090/7/4/045002
  135. Zorofchian Moghadamtousi S., Karimian H., Khanabdali R., Razavi M., Firoozinia M., Zandi K., Abdul Kadir H. 2014. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. Sci. World. J. 2014.
  136. 悟 戸田 and 博彦 都築. 2003. JP patent 4084275.
  137. 悠 井上 and 靖司 長谷川. 2012. JP patent 6050033.
  138. 正義 山口 and 敏博 鈴木. 2001. JP patent 3749978.
  139. 正弘 延原 and 正夫 谷原. 2005. JP patent 4986273.