DOI QR코드

DOI QR Code

Chemical Constituents from Solenostemma argel and their Cholinesterase Inhibitory Activity

  • Demmak, Rym Gouta (Laboratoire de Biochimie Appliquee, Departement des Sciences de la Nature et de la Vie, Universite Freres Mentouri-Constantine) ;
  • Bordage, Simon (Laboratoire de Pharmacognosie, Univ. Lille) ;
  • Bensegueni, Abederrahmane (Laboratoire de Biochimie Appliquee, Departement des Sciences de la Nature et de la Vie, Universite Freres Mentouri-Constantine) ;
  • Boutaghane, Naima (Laboratoire d'Obtention des Substances Therapeutiques (LOST), Campus Chaabet-Ersas, Departement de chimie, Universite des Freres Mentouri-Constantine) ;
  • Hennebelle, Thierry (Laboratoire de Pharmacognosie, Univ. Lille) ;
  • Mokrani, El Hassen (Laboratoire de Biochimie Appliquee, Departement des Sciences de la Nature et de la Vie, Universite Freres Mentouri-Constantine) ;
  • Sahpaz, Sevser (Laboratoire de Pharmacognosie, Univ. Lille)
  • Received : 2018.11.12
  • Accepted : 2018.12.09
  • Published : 2019.06.30

Abstract

Alzheimer's disease is a chronic neurodegenerative disorder with no curative treatment. The commercially available drugs, which target acetylcholinesterase, are not satisfactory. The aim of this study was to investigate the cholinesterase inhibitory activity of Solenostemma argel aerial part. Eight compounds were isolated and identified by NMR: kaempferol-3-O-glucopyranoside (1), kaempferol (2), kaempferol-3-glucopyranosyl($1{\rightarrow}6$)rhamnopyranose (3) p-hydroxybenzoic acid (4), dehydrovomifoliol (5), 14,15-dihydroxypregn-4-ene-3,20-dione (6), 14,15-dihydroxy-pregn-4-ene-3,20-dione-$15{\beta}$-D-glucopyranoside (7) and solargin I (8). Two of them (compounds 2 and 3) could inhibit over 50 % of butyrylcholinesterase activity at $100{\mu}M$. Compound (2) displayed the highest inhibitory effect against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with a slight selectivity towards the latter. Molecular docking studies supported the in vitro results and revealed that (2) had made several hydrogen and ${\pi}-{\pi}$ stacking interactions which could explain the compound potency to inhibit AChE and BChE.

Keywords

References

  1. Machado, L. P.; Carvalho, L. R.; Young, M. C. M.; Cardoso-Lopes, E. M.; Centeno, D. C.; Zambotti-Villela, L.; Colepicolo, P.; Yokoya, N. S. Rev. Bras. Farmacogn. 2015, 25, 657-662. https://doi.org/10.1016/j.bjp.2015.09.003
  2. Orhan, I. E.; Orhan, G.; Gurkas, E. Mini Rev. Med. Chem. 2011, 11, 836-842. https://doi.org/10.2174/138955711796575434
  3. Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K. Expert Opin. Drug Saf. 2014, 13, 759-774. https://doi.org/10.1517/14740338.2014.914168
  4. Lee, K. Y.; Sung, S. H.; Kim, Y. C. Helv. Chim. Acta. 2003, 86, 474-483. https://doi.org/10.1002/hlca.200390047
  5. Kamel, M. S.; Ohtani, K.; Hasanain, H. A.; Mohamed, M. H.; Kasai, R.; Yamasaki, K. Phytochemistry 2000, 53, 937-940. https://doi.org/10.1016/S0031-9422(99)00447-1
  6. Ounaissia, K.; Pertuit, D.; Mitaine-Offer, A. C.; Miyamoto, T.; Tanaka, C.; Delemasure, S.; Dutartre, P.; Smati, D.; Lacaille-Dubois, M. A. Fitoterapia 2016, 114, 98-104. https://doi.org/10.1016/j.fitote.2016.08.002
  7. Shafek, R. E.; Shafik, N. H.; Michael, H. N. Asian J. Plant Sci. 2012, 11, 143-147. https://doi.org/10.3923/ajps.2012.143.147
  8. Yang, Z.; Zhang, X.; Duan, D.; Song, Z.; Yang, M.; Li, S. J. Sep. Sci. 2009, 32, 3257-3259. https://doi.org/10.1002/jssc.200900266
  9. Plaza, A.; Perrone, A.; Balestrieri, C.; Balestrieri, M. L.; Bifulco, G.; Carbone, V.; Hamed, A.; Pizza, C.; Piacente, S. Tetrahedron 2005, 61,7470-7480. https://doi.org/10.1016/j.tet.2005.05.048
  10. Ibrahim, M. E.; Ahmed, S. S.; El-Sawi, S. A.; Khalid, K. A. J. Essent. Oil Bear. Pl. 2014, 17, 629-632. https://doi.org/10.1080/0972060X.2014.892842
  11. Di Giovanni, S.; Borloz, A.; Urbain, A.; Marston, A.; Hostettmann, K.; Carrupt, P. A.; Reist, M. Eur. J. Pharm. Sci. 2008, 33, 109-119. https://doi.org/10.1016/j.ejps.2007.10.004
  12. Cheung, J.; Gary, E. N.; Shiomi, K.; Rosenberry, T. L. ACS Med Chem Lett. 2013, 4, 1091-1096. https://doi.org/10.1021/ml400304w
  13. Wandhammer, M.; Carletti, E.; Van Der Schans, M.; Gillon, E.; Nicolet, Y.; Masson, P.; Goeldner, M.; Noort, D., Nachon, F. J. Biol.Chem. 2011, 286, 16783-16789. https://doi.org/10.1074/jbc.M110.209569
  14. Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  15. Schrodinger, L. Schrodinger Release 2015-1: Maestro (version 10.1). 2015, N. Y.
  16. Lobbens, E. S.; Vissing, K. J.; Jorgensen, L.; van de Weert, M.; Jager, A. K. J. Ethnopharmacol. 2017, 200, 66-73. https://doi.org/10.1016/j.jep.2017.02.020
  17. Wei, Y.; Xie, Q.; Fisher, D.; Sutherland, I. A. J. Chromatogr. A. 2011, 1218, 6206-6211. https://doi.org/10.1016/j.chroma.2011.01.058
  18. Park, J. S.; Rho, H. S.; Kim, D. H.; Chang, I. S. J. Agric. Food Chem. 2006, 54, 2951-2956. https://doi.org/10.1021/jf052900a
  19. Budzianowski, J. Phytochemistry 1990, 29, 3643-3647. https://doi.org/10.1016/0031-9422(90)85292-N
  20. Cho, J. Y.; Moon, J. H.; Seong, K. Y.; Park K. H. Biosci. Biotechnol. Biochem. 1998, 62, 2273-2276. https://doi.org/10.1271/bbb.62.2273
  21. Schievano, E.; Stocchero, M.; Morelato, E.; Facchin, C.; Mammi, S. Metabolomics 2012, 8, 679-690. https://doi.org/10.1007/s11306-011-0362-8
  22. Kamel, M. S. Phytochemistry 2003, 62, 1247-1250. https://doi.org/10.1016/S0031-9422(03)00022-0
  23. Jung, H. A.; Jung, Y. J.; Hyun, S. K.; Min, B. S.; Kim, D. W.; Jung, J. H.; Choi, J. S. Biol. Pharm. Bull. 2010, 33, 267-272. https://doi.org/10.1248/bpb.33.267
  24. Fang, Z.; Jeong, S. Y.; Jung, H. A.; Choi, J. S.; Min, B. S.; Woo, M. H. Chem. Pharm. Bull. 2010, 58, 1236-1239. https://doi.org/10.1248/cpb.58.1236
  25. Darvesh, S. Curr. Alzheimer Res. 2016, 13, 1173-1177. https://doi.org/10.2174/1567205013666160404120542
  26. Mehta, M.; Adem, A.;Sabbagh, M. Int. J. Alzheimers Dis. 2012, 2012, 728983.
  27. Guo, A. J. Y.; Xie, H. Q.; Choi, R. C. Y.; Zheng, K. Y. Z.; Bi, C. W. C.; Xu, S. L.; Dong, T. T. X.; Tsim, K. W. K. Chem. Biol. Interact. 2010, 187, 246-248. https://doi.org/10.1016/j.cbi.2010.05.002
  28. Bahrani, H.; Mohamad, J.; Paydar, M. J.; Rothan, H. A. Curr. Alzheimer Res. 2014, 11, 206-214. https://doi.org/10.2174/1567205011666140130151344
  29. Wan Othman, W. N. N.; Liew, S. Y.; Khaw, K. Y.; Murugaiyah, V.; Litaudon, M.; Awang, K. Bioorg. Med. Chem. 2016, 24, 4464-4469. https://doi.org/10.1016/j.bmc.2016.07.043
  30. Kandiah, N.; Pai, M. C.; Senanarong, V.; Looi, I.; Ampil, E.; Park, K.W.; Karanam, A. K.; Christopher, S. Clin. Interv. Aging. 2017, 12, 697-707. https://doi.org/10.2147/CIA.S129145

Cited by

  1. Intra-combined antioxidant activity and chemical characterization of three fractions from Rhamnus alaternus extract: Mixture design vol.144, 2019, https://doi.org/10.1016/j.indcrop.2019.112054
  2. A mechanistic study of Solenostemma argel as anti-rheumatic agent in relation to its metabolite profile using UPLC/HRMS vol.265, 2019, https://doi.org/10.1016/j.jep.2020.113341
  3. Bioguided Isolation of Active Compounds from Rhamnus alaternus against Methicillin-Resistant Staphylococcus aureus (MRSA) and Panton-Valentine Leucocidin Positive Strains (MSSA-PVL) vol.26, pp.14, 2021, https://doi.org/10.3390/molecules26144352