DOI QR코드

DOI QR Code

Intelligent design of retaining wall structures under dynamic conditions

  • Yang, Haiqing (School of Civil Engineering, Chongqing University) ;
  • Koopialipoor, Mohammadreza (Faculty of Civil and Environmental Engineering, Amirkabir University of Technology) ;
  • Armaghani, Danial Jahed (Institute of Research and Development, Duy Tan University) ;
  • Gordan, Behrouz (Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM)) ;
  • Khorami, Majid (Universidad UTE, Facultad de Arquitectura y Urbanismo) ;
  • Tahir, M.M. (UTM Construction Research Centre, Institute for Smart Infrastructure and Innovative Construction (ISIIC), School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
  • 투고 : 2019.04.08
  • 심사 : 2019.05.18
  • 발행 : 2019.06.25

초록

The investigation of retaining wall structures behavior under dynamic loads is considered as one of important parts for designing such structures. Generally, the performance of these structures is under the influence of the environment conditions and their geometry. The aim of this research is to design retaining wall structures based on smart and optimal systems. The use of accuracy and speed to assess the structures under different conditions is one of the important parts sought by designers. Therefore, optimal and smart systems are able to have better addressing these problems. Using numerical and coding methods, this research investigates the retaining wall structure design under different dynamic conditions. More than 9500 models were constructed and considered for modelling design. These designs include height and thickness of the wall, soil density, rock density, soil friction angle, and peak ground acceleration (PGA) variables. Accordingly, a neural network system was developed to establish an appropriate relationship between data to obtain safety factor (SF) of retaining walls under different seismic conditions. Different parameters were analyzed and the effect of each parameter was assessed separately. According to these analyses, the structure optimization was performed to increase the SF values. The optimal and smart design showed that under different PGA conditions, the structure performance can be appropriately improved while utilization of the initial (or basic) parameters leads to the structure failure. Therefore, by increasing accuracy and speed, smart methods could improve the retaining structure performance in controlling the wall failure. The intelligent design process of this study can be applied to some other civil engineering applications such as slope stability.

키워드

과제정보

연구 과제 주관 기관 : Natural Science Fund of China

참고문헌

  1. Abedini, M., Mutalib, A.A., Mehrmashhadi, J., Raman, S.N., Alipour, R., Momeni, T. and Mussa, M.H. (2019), "Large Deflection Behavior Effect in Reinforced Concrete Columns Exposed to Extreme Dynamic Loads", Front. Struct. Civil Eng., 32. http://dx.doi.org/10.31224/osf.io/6n5fs
  2. Aghakhani, M., Suhatril, M., Mohammadhassani, M., Daie, M. and Toghroli, A. (2015), "A simple modification of homotopy perturbation method for the solution of Blasius equation in semi-infinite domains", Math. Problems Eng., 7. http://dx.doi.org/10.1155/2015/671527
  3. Amiri, B., AghaRezaei, H. and Esmaeilabadi, R. (2018), "The effect of diagonal stiffeners on the behaviour of stiffened steel plate shear wall", J. Computat. Eng. Phys. Model., 1(1), 61-71. http://dx.doi.org/10.22115/CEPM.2018.112951.1007
  4. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2010), "Investigation of seismic behaviour of composite structures with concrete filled square steel tubular (CFSST) column by push-over and time-history analyses", Proceedings of the 4th International Conference on Steel & Composite Structures.
  5. Armaghani, D.J., Hasanipanah, M., Amnieh, H.B. and Mohamad, E.T. (2018), "Feasibility of ICA in approximating ground vibration resulting from mine blasting", Neural Comput. Appl., 29(9), 457-465. https://doi.org/10.1007/s00521-016-2577-0
  6. Atik, L.A. and Sitar, N. (2009), Experimental and Analytical Study of the Seismic Performance of Retaining Structure; Pacific Earthquake Engineering Research Center.
  7. Bahadori, A.R. and Ghassemieh, M. (2014), "Seismic evaluation of I-shaped beam-column connection with top and seat plates by component method", Sharif J. Sci. Technol. [Accepted]
  8. Behera, P.K., Sarkar, K., Singh, A.K., Verma, A.K. and Singh, T.N. (2017), "Erratum to, Dump Slope stability analysis-a case study", J. Geol. Soc. India, 89(2), 226-226. http://dx.doi.org/10.1007/s00521-016-2577-0
  9. Bobaru, F., Mehrmashadi, J., Chen, Z. and Niazi, S. (2018), "Intraply fracture in fiber-reinforced composites: A peridynamic analysis", Proceedings of ASC 33rd Annual Technical Conference & 18th US-Japan Conference on Composite Materials, Seattle, WA, USA.
  10. Brajevic, I. and Tuba, M. (2013), "An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems", J. Intel. Manuf., 24(4), 729-740. http://dx.doi.org/10.1007/s10845-011-0621-6
  11. Carl, B. and Gauss, F. (1833), "General Theory of Earth Magnetism", J. Japan. Soc. Civil Engrs., 12(1), 1-32.
  12. Chen, X.L., Fu, J.P., Yao, J.L. and Gan, J.F. (2018), "Prediction of shear strength for squat RC walls using a hybrid ANN-PSO model", Eng. Comput., 34(2), 367-383. https://doi.org/10.1007/s00366-017-0547-5
  13. Darbhanzi, A., Marefat, M.S., Khanmohammadi, M., Moradimanesh, A. and Zare, H. (2018), "Seismic performance of retrofitted URM walls with diagonal and vertical steel strips", Earthq. Struct., Int. J., 14(5), 449-458. https://doi.org/10.12989/eas.2018.14.5.449
  14. Dewoolkar, M.M., Ko, H.Y. and Pak, R.Y. (2002), "Seismic behavior of cantilever retaining walls with liquefiable backfills", J. Geotech. Geoenviron. Eng., 127(5), 424-435. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(424)
  15. Ebrahimi, E., Monjezi, M., Khalesi, M.R. and Armaghani, D.J. (2016), "Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm", Bull. Eng. Geol. Environ., 75(1), 27-36. https://doi.org/10.1007/s10064-015-0720-2
  16. Fanaie, N., Aghajani, S. and Afsar Dizaj, E. (2016), "Strengthening of moment-resisting frame using cable-cylinder bracing", Adv. Struct. Eng., 19(11), 1736-1754. https://doi.org/10.1177/1369433216649382
  17. Fanaie, N. and Shamlou, S.O. (2015), "Response modification factor of mixed structures", Steel Compos. Struct., Int. J., 19(6), 1449-1466. https://doi.org/10.12989/scs.2015.19.6.1449
  18. Firouzianhaji, A., Saleh, A. and Samali, B. (2014), "Stability analysis of steel storage rack structures", Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), Byron Bay, Australia, December.
  19. Gandomi, A.H., Kashani, A.R., Roke, D.A. and Mousavi, M. (2017), "Optimization of retaining wall design using evolutionary algorithms", Struct. Multidiscipl. Optimiz., 55(3), 809-825. https://doi.org/10.1007/s00158-016-1521-3
  20. Gazetas, G., Psarropoulos, P.N., Anastasopoulos, I. and Gerolymos, N. (2004), "Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation", Soil Dyn. Earthq. Eng., 24(7), 537-550. https://doi.org/10.1016/j.soildyn.2004.02.005
  21. Ghaleini, E.N., Koopialipoor, M., Momenzadeh, M., Sarafraz, M.E., Mohamad, E.T. and Gordan, B. (2018), "A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-018-0625-3
  22. Ghaleini, E.N., Koopialipoor, M., Momenzadeh, M., Sarafraz, M.E., Mohamad, E.T. and Gordan, B. (2019), "A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls", Eng. Comput., 35(2), 647-658. https://doi.org/10.1007/s00366-018-0625-3
  23. Ghassemieh, M. and Bahadori, A.R. (2015), "Seismic evaluation of a steel moment frame with cover plate connection considering flexibility by component method", Proceedings of International Conference on Steel and Composite Structures (ASEM), Incheon, South Korea, pp. 25-29.
  24. Gordan, B., Koopialipoor, M., Clementking, A., Tootoonchi, H. and Mohamad, E.T. (2018), "Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques", Eng. Comput., 1-10. https://doi.org/10.1007/s00366-018-0642-2
  25. Green, R. (2002), Seismic Analysis of Cantilever Retaining Walls , Phase I, MICHIGAN UNIV ANN ARBOR DEPT OF CIVIL AND ENVIRONMENTAL ENGINEERING.
  26. Gudehus, G. and Touplikiotis, A. (2018), "On the stability of geotechnical systems and its fractal progressive loss", Acta Geotechnica, 13(2), 317-328. https://doi.org/10.1007/s11440-017-0549-x
  27. Hajihassani, M., Armaghani, D.J. and Kalatehjari, R. (2018), "Applications of Particle Swarm Optimization in Geotechnical Engineering, A Comprehensive Review", Geotech. Geol. Eng., 36(2), 705-722. https://doi.org/10.1007/s10706-017-0356-z
  28. Hamidian, M., Shariati, A., Khanouki, M.A., Sinaei, H., Toghroli, A. and Nouri, K. (2012), "Application of Schmidt rebound hammer and ultrasonic pulse velocity techniques for structural health monitoring", Sci. Res. Essays, 7(21), 1997-2001.
  29. Hasanipanah, M., Shahnazar, A., Amnieh, H.B. and Armaghani, D.J. (2017), "Prediction of air-overpressure caused by mine blasting using a new hybrid PSO-SVR model", Eng. Comput., 33(1), 23-31. https://doi.org/10.1007/s00366-016-0453-2
  30. Hasanipanah, M., Armaghani, D.J., Amnieh, H.B., Koopialipoor, M. and Arab, H. (2018), "A Risk-Based Technique to Analyze Flyrock Results Through Rock Engineering System", Geotech. Geol. Eng., 36(4), 2247-2260. https://doi.org/10.5897/SRE11.1387
  31. Haykin, S. and Network, N. (1999), "A comprehensive foundation", Neural Networks, 2(2004), 41-41.
  32. Heydari, A. and Shariati, M. (2018). "Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium", Struct. Eng. Mech., Int. J., 66(6), 737-748. http://dx.doi.org/10.12989/sem.2018.66.6.737
  33. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., Int. J., 26(4), 485-499. http://dx.doi.org/10.12989/scs.2018.26.4.485
  34. Irani, R. and Nasimi, R. (2011), "Application of artificial bee colony-based neural network in bottom hole pressure prediction in underbalanced drilling", J. Petrol. Sci. Eng., 78(1), 6-12. https://doi.org/10.1016/j.petrol.2011.05.006
  35. Karaboga, D. (2005), An idea based on honey bee swarm for numerical optimization. - Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005. - T. 200, Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005-2005.
  36. Katebi, J., Shoaei-parchin, M. Shariati, M. Trung N.T. and Khorami, M. (2019), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 1-20.
  37. Khanouki, M.A., Sulong, N.R., Shariati, M. and Tahir, M.M. (2016), "Investigation of through beam connection to concrete filled circular steel tube (CFCST) column", J. Constr. Steel Res., 121, 144-162. https://doi.org/10.1016/j.jcsr.2016.01.002
  38. Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M. (2017), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Earthq. Struct., Int. J., 13(6), 531-538. http://dx.doi.org/10.12989/eas.2017.13.6.531
  39. Khorramian, K., Maleki, S., Shariati, M. and Sulong, N.R. (2015), "Behavior of tilted angle shear connectors", PLoS ONE, 10(12), 1-11. https://doi.org/10.1371/journal.pone.0144288
  40. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M.M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., Int. J., 23(1), 67-85. http://dx.doi.org/10.12989/scs.2017.23.1.067
  41. Koopialipoor, M., Ghaleini, E.N., Haghighi, M., Kanagarajan, S., Maarefvand, P. and Mohamad, E.T. (2018a), "Overbreak prediction and optimization in tunnel using neural network and bee colony techniques", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-018-0658-7
  42. Koopialipoor, M., Armaghani, D.J., Hedayat, A., Marto, A. and Gordan, B. (2018b), "Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions", Soft Computing, 1-17. https://doi.org/10.1007/s00500-018-3253-3
  43. Koopialipoor, M., Armaghani, D.J., Hedayat, A., Marto, A. and Gordan, B. (2018c), "Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions", Soft Computing. https://doi.org/10.1007/s00500-00018-03253-00503.
  44. Koopialipoor, M., Nikouei, S.S., Marto, A., Fahimifar, A., Armaghani, D.J. and Mohamad, E.T. (2018d), "Predicting tunnel boring machine performance through a new model based on the group method of data handling", Bull. Eng. Geol. Environ., 78(5), 3799-3813. https://doi.org/10.1007/s10064-018-1349-8
  45. Koopialipoor, M., Armaghani, D.J., Haghighi, M. and Ghaleini, E.N. (2019a), "A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels", Bull. Eng. Geol. Environ., 78(2), 981-990. https://doi.org/10.1007/s10064-017-1116-2
  46. Koopialipoor, M., Fahimifar, A., Ghaleini, E.N., Momenzadeh, M. and Armaghani, D.J. (2019b), "Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-019-00701-8
  47. Koopialipoor, M., Fallah, A., Armaghani, D.J., Azizi, A. and Mohamad, E.T. (2019c), "Three hybrid intelligent models in estimating flyrock distance resulting from blasting", Eng. Comput., 35(1), 243-256. https://doi.org/10.1007/s00366-018-0596-4
  48. Koopialipoor, M., Murlidhar, B.R., Hedayat, A., Armaghani, D.J., Gordan, B. and Mohamad, E.T. (2019d), "The use of new intelligent techniques in designing retaining walls", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-018-00700-1
  49. Koopialipoor, M., Murlidhar, B.R., Hedayat, A., Armaghani, D.J., Gordan, B. and Mohamad, E.T. (2019e), "The use of new intelligent techniques in designing retaining walls", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-018-00700-1
  50. Kramer, S.L. (1996), Geotechnical earthquake engineering. in prentice--Hall international series in civil engineering and engineering mechanics, Prentice-Hall, New Jersey.
  51. Liao, X., Khandelwal, M., Yang, H., Koopialipoor, M. and Murlidhar, B.R. (2019), "Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques", Eng. Comput., 1-12.
  52. Mansouri, I., Safa, M., Ibrahim, Z., Kisi, O., Tahir, M.M., Baharom, S. and Azimi, M. (2016), "Strength prediction of rotary brace damper using MLR and MARS", Struct. Eng. Mech., Int. J., 60(3), 471-488. https://doi.org/10.12989/sem.2016.60.3.471
  53. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M.M. and Petkovic, D. (2017), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intel. Manuf., 30(3), 1247-1257. https://doi.org/10.1007/s10845-017-1306-6
  54. Mehrmashhadi, J., Chen, Z., Zhao, J. and Bobaru, F. (2019a), "A Stochastically Homogenized Peridynamic Model for Intraply Fracture in Fiber-Reinforced Composites", engrXiv Preprints, 31. https://doi.org/10.31224/osf.io/tymhs6
  55. Mehrmashhadi, J., Mallet, P., Michel, P. and Termeh Yousefi, A. (2019b), "Rapid Fabrication of Amphibious Bus with Low Rollover Risk, Toward Well-Structured Bus-Boat Using Truck Chassis", Smart Structures and Systems, 1-8. [Accepted for publication]
  56. Mehrmashhadi, J., Tang, Y., Zhao, X., Xu, Z., Pan, J.J., Van Le, Q. and Bobaru, F. (2019c), "The Effect of Solder Joint Microstructure on the Drop Test Failure-A Peridynamic Analysis", IEEE Transactions on Components, Packaging and Manufacturing Technology, 9(1), 58-71. https://doi.org/10.1109/TCPMT.2018.2862898
  57. Milovancevic, M., Marinovic, J.S., Nikolic, J., Kitic, A., Shariati, M., Trung, N.T., Wakil, K. and Khorami, M. (2019), "UML diagrams for dynamical monitoring of rail vehicles", Physica A: Statist. Mech. Appl., 121169. https://doi.org/10.1016/j.physa.2019.121169
  58. Moghaddam, H., Fanaie, N. and Hamzehloo, H. (2009), "Uniform hazard response spectra and ground motions for Tabriz", J. Scientia Iranica, 16(3), 238-248.
  59. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., Int. J., 46(6), 853-868. http://dx.doi.org/10.12989/sem.2013.46.6.853
  60. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014a), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., Int. J., 14(5), 785-809. http://dx.doi.org/10.12989/.2014.14.5.785
  61. Mohammadhassani, M., Suhatril, M., Shariati, M. and Ghanbari, F. (2014b), "Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios", Struct. Eng. Mech., Int. J., 48(6), 833-848. http://dx.doi.org/10.12989/sem.2013.48.6.833
  62. Mohammadhassani, M., Saleh, A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., Int. J., 16(3), 497-519. http://dx.doi.org/10.12989/sss.2015.16.3.497
  63. Mononobe, N. and Matsuo, H. (1929), On the Determination of Earth Pressure during Earthquake.
  64. Mylonakis, G., Kloukinas, P. and Papantonopoulos, C. (2006), "An alternative to the Mononobe-Okabe equations for seismic earth pressures", Soil Dyn. Earthq. Eng., 27(10), 957-969. https://doi.org/10.1016/j.soildyn.2007.01.004
  65. Nguyen-Xuan, H., Tran, L.V., Thai, C.H. and Nguyen-Thoi, T. (2012), "Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing", Thin-Wall. Struct., 54, 1-18. https://doi.org/10.1016/j.tws.2012.01.013
  66. Nakamura, S. (2011), "Reexamination of Mononobe-Okabe Theory of Gravity Retaining Walls Using Centrifuge Model Tests", Soils Found., 46(2), 135-146. https://doi.org/10.3208/sandf.46.135
  67. Nguyen-Minh, N., Tran-Van, N., Bui-Xuan, T. and Nguyen-Thoi, T. (2018), "Free vibration analysis of corrugated panels using homogenization methods and a cell-based smoothed Mindlin plate element (CS-MIN3)", Thin-Wall. Struct., 124, 184-201. https://doi.org/10.1016/j.tws.2017.12.003
  68. Ostadan, F. (2005), "Seismic soil pressure for building walls, An updated approach", Soil Dyn. Earthq. Eng., 25(7-10), 785-793. https://doi.org/10.1016/j.soildyn.2004.11.035
  69. Psarropoulos, P.N., Klonaris, G. and Gazetas, G. (2005), "Seismic earth pressures on rigid and flexible retaining walls", Soil Dyn. Earthq. Eng., 25(7-10), 795-809. https://doi.org/10.1016/j.soildyn.2004.11.020
  70. Rezaei, M. (2016), "Development of an intelligent model to estimate the height of caving-fracturing zone over the longwall gobs", Neural Comput. Appl., 30(7), 2145-2158. https://doi.org/10.1007/s00521-016-2809-3
  71. Sadeghipour Chahnasir, E., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamed, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., Int. J., 22(4), 413-424. http://dx.doi.org/10.12989/sss.2018.22.4.413
  72. Saemi, M., Ahmadi, M. and Varjani, A.Y. (2007), "Design of neural networks using genetic algorithm for the permeability estimation of the reservoir", J. Petrol. Sci. Eng., 59(1-2), 97-105. https://doi.org/10.1016/j.petrol.2007.03.007
  73. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., Int. J., 21(3), 679-688. http://dx.doi.org/10.12989/scs.2016.21.3.679
  74. Oliveira, I.M.S.D., Schirru, R. and Medeiros, J.A. (2009), On the performance of an artificial bee colony optimization algorithm applied to the accident diagnosis in a pwr nuclear power plant
  75. Sedghi, Y., Zandi, Y., Toghroli, A., Safa, M., Mohamad, E.T., Khorami, M. and Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., Int. J., 22(3), 335-340. http://dx.doi.org/10.12989/sss.2018.22.3.335
  76. Seed, H.B. and Whitman, R.V. (1970), Design of Earth Retainig Structures for Dynamic Loads.
  77. Shafaei, S., Ayazi, A. and Farahbod, F. (2016), "The effect of concrete panel thickness upon composite steel plate shear walls", J. Constr. Steel Res., 117, 81-90. https://doi.org/10.1016/j.jcsr.2015.10.006
  78. Sharbatdar, M., Bazzaz, M., Esmaeili, H. and Bazzaz, M. (2008), "Influence of Transverse Loading on the Stability of Slender Unreinforced Masonry Walls", Proceedings of the 14th International Civil Engineering Student Conference, Semnan, Iran, pp. 1-12.
  79. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian Multiplier Method by using optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., Int. J., 29(2), 243-256. http://dx.doi.org/10.12989/scs.2018.29.2.243
  80. Shariati, M., Ramli Sulong, N.H., Maleki, S. and Arabnejad Kh, M.M. (2010), "Experimental and analytical study on channel shear connectors in light weight aggregate concrete", Proceedings of the 4th International Conference on Steel & Composite Structures, July, Sydney, Australia.
  81. Shariati, M., Ramli Sulong, N.H., Sinaei, H., Khanouki, A., Mehdi, M. and Shafigh, P. (2011), "Behavior of channel shear connectors in normal and light weight aggregate concrete (experimental and analytical study)", Adv. Mater. Res., 168, 2303-2307. https://doi.org/10.4028/www.scientific.net/AMR.168-170.2303
  82. Shariati, M., Sulong, N.R., Suhatril, M., Shariati, A., Khanouki, M.A. and Sinaei, H. (2012), "Behaviour of C-shaped angle shear connectors under monotonic and fully reversed cyclic loading, An experimental study", Mater. Des., 41, 67-73. https://doi.org/10.1016/j.matdes.2012.04.039
  83. Shariati, M., Sulong, N.R., Shariati, A. and Khanouki, M.A. (2015), "Behavior of V-shaped angle shear connectors, experimental and parametric study", Mater. Struct., 49(9), 3909-3926. https://doi.org/10.1617/s11527-015-0762-8
  84. Shariati, M., Toghroli, A., Jalali, A. and Ibrahim, Z. (2017), "Assessment of stiffened angle shear connector under monotonic and fully reversed cyclic loading", Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering - CSM 2017, Zurich, Switzerland.
  85. Singh, A. and Sundar, S. (2011), "An artificial bee colony algorithm for the minimum routing cost spanning tree problem", Soft Comput., 15(12), 2489-2499. https://doi.org/10.1007/s00500-011-0711-6
  86. Toghroli, A. (2015), "Applications of the ANFIS and LR Models in the Prediction of Shear Connection in Composite Beams", Jabatan Kejuruteraan Awam, Fakulti Kejuruteraan, Universiti Malaya.
  87. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., Int. J., 17(5), 623-639. http://dx.doi.org/10.12989/scs.2014.17.5.623
  88. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intel. Manuf., 29(8), 1793-1801. https://doi.org/10.1007/s10845-016-1217-y
  89. Toghroli, A., Darvishmoghaddam, E., Zandi, Y., Parvan, M., Safa, M., Abdullahi, M.A.M., Heydari, A., Wakil, K., Gebreel, S.A. and Khorami, M. (2018), "Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method", Comput. Concrete, Int. J., 21(5), 525-530. http://dx.doi.org/10.12989/cac.2018.21.5.525
  90. Wang, Y., Watson, R., Rostami, J., Wang, J.Y., Limbruner, M. and He, Z. (2014), "Study of borehole stability of Marcellus shale wells in longwall mining areas", J. Petrol. Explor. Prod. Technol., 4(1), 59-71. https://doi.org/10.1007/s13202-013-0083-9
  91. Wang, M., Shi, X. and Zhou, J. (2018a), "Charge design scheme optimization for ring blasting based on the developed Scaled Heelan model", Int. J. Rock Mech. Min. Sci., 110, 199-209. https://doi.org/10.1016/j.ijrmms.2018.08.004
  92. Wang, M., Shi, X. and Zhou, J. (2019), "Optimal Charge Scheme Calculation for Multiring Blasting Using Modified Harries Mathematical Model", J. Perform. Constr. Facil., 33(2), 04019002. https://do7i.org/10.1061/(ASCE)CF.1943-5509.0001263
  93. Wang, M., Shi, X., Zhou, J. and Qiu, X. (2018b), "Multi-planar detection optimization algorithm for the interval charging structure of large-diameter longhole blasting design based on rock fragmentation aspects", Eng. Optimiz., 50(12), 2177-2191. https://doi.org/10.1080/0305215X.2018.1439943
  94. Wei, X., Shariati, M., Zandi, Y., Pei, S., Jin, Z., Gharachurlu, S., Abdullahi, M.M., Tahir, M.M. and Khorami, M. (2018), "Distribution of shear force in perforated shear connectors", Steel Compos. Struct., Int. J., 27(3), 389-399. http://dx.doi.org/10.12989/scs.2018.27.3.389
  95. Wood, J.H. (1973), "Earthquake-induced soil pressures on structures", Calif. Inst. Technol., 311-311.
  96. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447. http://dx.doi.org/10.12989/scs.2018.28.4.439
  97. Zhou, J., Li, X. and Mitri, H.S. (2016a), "Classification of rockburst in underground projects, Comparison of ten supervised learning methods", J. Comput. Civil Eng., 30(5), 4016003-4016003. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000553
  98. Zhou, J., Shi, X. and Li, X. (2016b), "Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining", J. Vib. Control, 22(19), 3986-3997. https://doi.org/10.1177/1077546314568172
  99. Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H.A. and Acikalin, S. (2008), "Prediction of uniaxial compressive strength of sandstones using petrography-based models", Eng. Geol., 96(3-4), 141-158. https://doi.org/10.1016/j.enggeo.2007.10.009

피인용 문헌

  1. Evaluation and Optimization of Prediction of Toe that Arises from Mine Blasting Operation Using Various Soft Computing Techniques vol.29, pp.2, 2019, https://doi.org/10.1007/s11053-019-09605-2
  2. Numerical calculation and test of the composite materials under dynamic loading vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.079