Acknowledgement
Supported by : National Natural Science Foundation of China, Shanxi National Science Foundation of China, China Scholarship Council, Central Universities
References
- Al-Salloum, Y.A., Alrubaidi, M.A., Elsanadedy, H.M., Almusallam, T.H. and Iqbal, R.A. (2018), "Strengthening of precast RC beam-column connections for progressive collapse mitigation using bolted steel plates", Eng. Struct., 161, 146-160. https://doi.org/10.1016/j.engstruct.2018.02.009
- Amiri, S., Saffari, H. and Mashhadi, J. (2018), "Assessment of dynamic increase factor for progressive collapse analysis of RC structures", Eng. Fail. Anal., 84, 300-310. https://doi.org/10.1016/j.engfailanal.2017.11.011
- ASCE (2010), Minimum Design Loads for Buildings and Other Structures, Reston, VA, USA.
- ASCE (2013), Seismic Evaluation and Retrofit of Existing Buildings, ASCE/SEI 41-13, Reston, VA, USA.
- Bredean, L.A. and Botez, M.D. (2018), "The influence of beams design and the slabs effect on the progressive collapse resisting mechanisms development for RC framed structures", Eng. Fail. Anal., 91 527-542. https://doi.org/10.1016/j.engfailanal.2018.04.052
- Chen, C.H., Zhu, Y.F., Yao, Y. and Huang, Y. (2016a), "Progressive collapse analysis of steel frame structure based on the energy principle", Steel Compos. Struct., Int. J., 21(3), 553-571. http://dx.doi.org/10.12989/scs.2018.28.2.233
- Chen, C.H., Zhu, Y.F., Yao, Y., Huang, Y. and Long, X. (2016b), "An evaluation method to predict progressive collapse resistance of steel frame structures", J. Constr. Steel. Res., 122, 238-250. https://doi.org/10.1016/j.jcsr.2016.03.024
- Da Silva, L.S., de Lima, L.R., Da SVellasco, P. and de Andrade, S.A. (2004), "Behaviour of flush end-plate beam-to-column joints under bending and axial force", Steel Compos. Struct., 4(2), 77-94. https://doi.org/10.12989/scs.2004.4.2.077
- Del Savio, A.A., Nethercot, D.A., Vellasco, P.D.S., Andrade, S. and Martha, L.F. (2009), "Generalised component-based model for beam-to-column connections including axial versus moment interaction", J. Constr. Steel. Res., 65(8-9), 1876-1895. https://doi.org/10.1016/j.jcsr.2009.02.011
- Department of Defense (DoD) (2013), DESIGN OF BUILDINGS TO RESIST PROGRESSIVE COLLAPSE, Unified Facilities Criteria.
- EN, E.C.F.S. (2005), Design of steel structures, part 1-8: Design of joints, Eurocode 3.
- Eren, N., Brunesi, E. and Nascimbene, R. (2019), "Influence of masonry infills on the progressive collapse resistance of reinforced concrete framed buildings", Eng. Struct., 178, 375-394. https://doi.org/10.1016/j.engstruct.2018.10.056
- Federal Emergency Management Agency (2000), FEMA356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Washington, D.C., USA.
- Ferraioli, M., Lavino, A. and Mandara, A. (2017), "06.03: Dynamic increase factor for nonlinear static alternate path analysis of steel moment-resisting frames against progressive collapse", ce/papers., 1(2-3), 1437-1446. https://doi.org/10.1002/cepa.186
- Frye, M.J. and Morris, G.A. (1975), "Analysis of flexibly connected steel frames", Can. J. Civil Eng., 2(3), 280-291. https://doi.org/10.1139/l75-026
- Fu, F. (2009), "Progressive collapse analysis of high-rise building with 3-D finite element modeling method", J. Constr. Steel Res., 65(6), 1269-1278. https://doi.org/10.1016/j.jcsr.2009.02.001
- Gao, S. (2019), "Nonlinear finite element failure analysis of bolted steel-concrete composite frame under column-loss", J. Constr. Steel. Res., 155, 62-76. https://doi.org/10.1016/j.jcsr.2018.12.020
- Gao, S., Guo, L., Fu, F. and Zhang, S. (2017), "Capacity of semirigid composite joints in accommodating column loss", J. Constr. Steel Res., 139, 288-301. https://doi.org/10.1016/j.jcsr.2017.09.029
- GSA, U.S. (2003), "Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects", Washington, D.C., USA.
- GSA, U.S. (2013), "Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects", Washington, D.C., USA.
- Kim, T. and Kim, J. (2009), "Collapse analysis of steel moment frames with various seismic connections", J. Constr. Steel. Res., 65(6), 1316-1322. https://doi.org/10.1016/j.jcsr.2008.11.006
- Lima, L.R.O.D., Silva, L.S.D., Da, S., Vellasco, P.C.G. and Andrade, S.A.L.D. (2002), "Experimental analysis of extended end-plate beam-to-column joints under bending and axial force", Eurosteel Coimbra, 1121-1130.
- Lin, S., Yang, B., Kang, S. and Xu, S. (2019), "A new method for progressive collapse analysis of steel frames", J. Constr. Steel. Res., 153, 71-84. https://doi.org/10.1016/j.jcsr.2018.09.029
- Liu, M. (2013), "A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse", Eng. Struct., 48, 666-673. https://doi.org/10.1016/j.engstruct.2012.12.011
- Mashhadi, J. and Saffari, H. (2017), "Effects of Postelastic Stiffness Ratio on Dynamic Increase Factor in Progressive Collapse", J. Perform. Constr. Fac., 31(6), 4017107. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001109
- Mashhadiali, N., Kheyroddin, A. and Zahiri-Hashemi, R. (2016), "Dynamic Increase Factor for Investigation of Progressive Collapse Potential in Tall Tube-Type Buildings", J. Perform. Constr. Fac., 30(6), 4016050. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000905
- Mckay, A.E. (2008), "Alternate Path method in progressive collapse analysis: Variation of dynamic and non-linear load increase factors", Pract. Period. Struct. Des. Const., 17(4), 152-160. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000126
- Peng, Z., Orton, S.L., Liu, J. and Tian, Y. (2017), "Experimental Study of Dynamic Progressive Collapse in Flat-Plate Buildings Subjected to Exterior Column Removal", J. Struct. Eng., 143(9), p. 04017125. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001865
- Qian, K. and Li, B. (2018), "Performance of Precast Concrete Substructures with Dry Connections to Resist Progressive Collapse", J. Perform. Constr. Fac., 32(2), 4018005. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001147
- Quiel, S.E., Naito, C.J. and Fallon, C.T. (2019), "A non-emulative moment connection for progressive collapse resistance in precast concrete building frames", Eng. Struct., 179, 174-188. https://doi.org/10.1016/j.engstruct.2018.10.027
- Rahnavard, R., Fard, F.F.Z., Hosseini, A. and Suleiman, M. (2018), "Nonlinear Analysis on Progressive Collapse of Tall Steel Composite Buildings", Case Stud. Const. Materials., 8, S1390319133.
- Ruth, P., Marchand, K.A. and Williamson, E.B. (2006), "Static equivalency in progressive collapse alternate path analysis: Reducing conservatism while retaining structural integrity", J. Perform. Constr. Fac., 20(4), 349-364. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(349)
- Stephen, D., Lam, D., Forth, J., Ye, J. and Tsavdaridis, K.D. (2019), "An evaluation of modelling approaches and column removal time on progressive collapse of building", J. Constr. Steel. Res., 153, 243-253. https://doi.org/10.1016/j.jcsr.2018.07.019
- Stylianidis, P.M. and Nethercot, D.A. (2015), "Modelling of connection behaviour for progressive collapse analysis", J. Constr. Steel. Res., 113, 169-184. https://doi.org/10.1016/j.jcsr.2015.06.008
- Tsai, M. and Lin, B. (2009), "Dynamic amplification factor for progressive collapse resistance analysis of an RC building", Struct. Des. Tall Spec. Build., 18(5), 539-557. https://doi.org/10.1002/tal.453
- Yan, S., Zhao, X., Chen, Y., Xu, Z. and Lu, Y. (2018), "A new type of truss joint for prevention of progressive collapse", Eng. Struct., 167, 203-213. https://doi.org/10.1016/j.engstruct.2018.04.031
- Yang, B. and Tan, K.H. (2012), "Numerical analyses of steel beam-column joints subjected to catenary action", J. Constr. Steel. Res., 70, 1-11. https://doi.org/10.1016/j.jcsr.2011.10.007
- Yu, J., Luo, L. and Yi, L. (2018), "Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios", Eng. Struct., 159, 14-27. https://doi.org/10.1016/j.engstruct.2017.12.038