DOI QR코드

DOI QR Code

Vibration control of a stay cable with a rotary electromagnetic inertial mass damper

  • Wang, Zhi Hao (International Joint Research Lab for Eco-building Materials and Engineering of Henan Province, North China University of Water Resources and Electric Power) ;
  • Xu, Yan Wei (International Joint Research Lab for Eco-building Materials and Engineering of Henan Province, North China University of Water Resources and Electric Power) ;
  • Gao, Hui (International Joint Research Lab for Eco-building Materials and Engineering of Henan Province, North China University of Water Resources and Electric Power) ;
  • Chen, Zheng Qing (College of Civil Engineering, Hunan University) ;
  • Xu, Kai (College of Civil Engineering, Hunan University) ;
  • Zhao, Shun Bo (International Joint Research Lab for Eco-building Materials and Engineering of Henan Province, North China University of Water Resources and Electric Power)
  • 투고 : 2016.10.18
  • 심사 : 2019.01.25
  • 발행 : 2019.06.25

초록

Passive control may not provide enough damping for a stay cable since the control devices are often restricted to a low location level. In order to enhance control performance of conventional passive dampers, a new type of damper integrated with a rotary electromagnetic damper providing variable damping force and a flywheel serving as an inertial mass, called the rotary electromagnetic inertial mass damper (REIMD), is presented for suppressing the cable vibrations in this paper. The mechanical model of the REIMD is theoretically derived according to generation mechanisms of the damping force and the inertial force, and further validated by performance tests. General dynamic characteristics of an idealized taut cable with a REIMD installed close to the cable end are theoretically investigated, and parametric analysis are then conducted to investigate the effects of inertial mass and damping coefficient on vibration control performance. Finally, vibration control tests on a scaled cable model with a REIMD are performed to further verify mitigation performance through the first two modal additional damping ratios of the cable. Both the theoretical and experimental results show that control performance of the cable with the REIMD are much better than those of conventional passive viscous dampers, which mainly attributes to the increment of the damper displacement due to the inertial mass induced negative stiffness effects of the REIMD. Moreover, it is concluded that both inertial mass and damping coefficient of an optimum REIMD will decrease with the increase of the mode order of the cable, and oversize inertial mass may lead to negative effect on the control performance.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. Ahmad, J., Cheng, S.H. and Ghrib, F. (2018), "Combined effect of external damper and cross-tie on the modal response of hybrid two-cable networks", J. Sound. Vib., 417, 132-148. https://doi.org/10.1016/j.jsv.2017.12.023.
  2. Cai, C.S., Wu, W.J. and Araujo, M. (2007), "Cable vibration control with a TMD-MR damper system: experimental exploration", J. Struct. Eng. - ASCE, 133(5), 629-637. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(629).
  3. Caracoglia, L. and Jones, N.P. (2007), "Damping of taut-cable systems, two dampers on a single stay", J. Eng. Mech. - ASCE, 133(10), 1050-1060. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:10(1050).
  4. Chen, L., Sun L.M. and Nagarajaiah, S. (2015), "Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics", Smart Struct. Syst., 15(3), 627-643. http://dx.doi.org/10.12989/sss.2015.15.3.627.
  5. Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter" IEEE T. Automat. Contr., 47(10), 1648-1662. http://dx.doi.org/10.1109/TAC.2002.803532.
  6. Chen, Z.Q., Wang, X.Y., Ko, J.M., Ni. Y.Q., Spencer, B.F., Jr., Yang, G. and Hu, J.H. (2004),"MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge", Wind Struct., 7(5), 293-304. http://dx.doi.org/10.1117/12.498072.
  7. Cheng, S.H., Darivandi, N. and Ghrib, F. (2010), "The design of an optimal viscous damper for a bridge stay cable using energybased approach", J. Sound. Vib., 329(22), 4689-4704. https://doi.org/10.1016/j.jsv.2010.05.027.
  8. Jung, H.J., Jang, J.E., Choi, K.M. and Lee, H.J. (2008), "MR fluid damper-based smart damping systems for long steel stay cable under wind load", Smart. Struct. Syst., 4(5), 697-710. https://doi.org/10.12989/sss.2008.4.5.697.
  9. Choi, Y.T. and Wereley, N.M. (2006), "Self-powered magnetorheological dampers", J. Vib. Acoust., 131(4), 044501(1-5). https://doi.org/10.1115/1.3142882.
  10. Christenson, R.E., Spencer, B.F. and Johnson, E.A. (2006), "Experimental verification of smart cable damping", J. Eng. Mech. - ASCE, 132(3), 268-278. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(268).
  11. Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2005), "State-derivative feedback control of cable vibration using semi-active MR damper", Comput. - Aided Civ. Inf., 20(6), 431-449. https://doi.org/10.1111/j.1467-8667.2005.00396.x.
  12. Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2006), "Cable vibration control using magneto-rheological (MR) dampers", J. Intel. Mat. Syst. Str., 17(4), 321-325. https://doi.org/10.1142/9789812702197_0121.
  13. Duan, Y.F., Tao, J.J., Zhang, H.M., et al. (2018), "Real-time hybrid simulation based on vector form intrinsic finite element and field programmable gate array", Struct. Control Health Monit., 26(1), e2277. https://doi.org/10.1002/stc.2277.
  14. Duan, Y.F., Ni. Y.Q., Zhang, H.M., et al. (2019a), "Design formulas for vibration control of taut cables using passive MR dampers", Smart Struct. Syst., 23(6), (in press).
  15. Duan, Y.F., Ni, Y.Q., Zhang, H.M., et al. (2019b), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., 23(6), (in press).
  16. Fujino,Y. and Hoang, N. (2008), "Design formulas for damping of a stay cable with a damper", J. Struct. Eng .- ASCE, 134(2), 269-278. https://doi.org/10.1061/(ASCE)07339445(2008)134:2(269).
  17. Fournier, J.A. and Cheng, S.H. (2014), "Impact of damper stiffness and damper support stiffness on the efficiency of a linear viscous damper in controlling stay cable vibrations", J. Bridge Eng. - ASCE, 19(4), 04013022. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000562.
  18. Garrido, H., Curadelli, O. and Ambrosini, D. (2013), "Improvement of tuned mass damper by using rotational inertial through tuned viscous mass damper", Eng. Struct., 56(6), 2149-2153. https://doi.org/10.1016/j.engstruct.2013.08.044.
  19. He, X.H., Cai, C., Wang, Z.J., Jimg, H.Q. and Qin, C.W. (2018), "Experimental verification of the effectiveness of elastic crossties in suppressing wake-induced vibrations of staggered stay cables", Eng. Struct., 167, 151-165. https://doi.org/10.1016/j.engstruct.2018.04.033.
  20. Hogsberg, J. (2011), "The role of negative stiffness in semi-active control of magneto-rheological dampers", Struct. Control Health Monit., 18(3), 289-304. https://doi.org/10.1002/stc.371.
  21. Huang, H., Sun, L.M. and Jiang, X. (2012), "Vibration mitigation of stay cable using optimally tuned MR damper", Smart Struct. Syst., 9(1), 35-53. https://doi.org/10.12989/sss.2012.9.1.035.
  22. Iemura, H. and Pradono, M.H. (2003), "Application of pseudo negative stiffness control to the benchmark cable-stayed bridges", Struct. Control Health Monit., 10(3-4), 187-203. https://doi.org/10.1002/stc.25.
  23. Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. D., 41(3), 453-474. https://doi.org/10.1002/eqe.1138.
  24. Johnson, E.A., Christenson, R.E. and Spencer, B.F. (2003), "Semiactive damping of cables with sag", Comput. - Aided. Civ. Inf., 18(2), 132-146. https://doi.org/10.1111/1467-8667.00305.
  25. Kim, I.H., Jung, H.J. and Koo, J.H. (2010), "Experimental evaluation of a self-powered smart damping system in reducing vibration of a full-scale stay cable", Smart Mater. Struct., 19(11), 115027(1-10). https://doi.org/10.1088/0964-1726/19/11/115027.
  26. Kovacs, I. (1982), "Zur frage der seilschwingungen und der seildampfung", Bautechnik, 59(10), 325-332.
  27. Krenk, S. (2000), "Vibration of a taut cable with an external damper", J. Appl. Mech. - T ASME, 67, 772-776. https://doi.org/10.1115/1.1322037.
  28. Lazar, I.F, Neild, S.A. and Wagg, D.J. (2016) "Vibration suppression of cables using tuned inerter dampers", Eng. Struct., 122, 62-71. https://doi.org/10.1016/j.engstruct.2016.04.017
  29. Li, H., Liu, M. and Ou, J.P. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monit., 15(2), 120-142. https://doi.org/10.1002/stc.200
  30. Li, H., Liu, M., Li, J.H., Guan, X.C. and Ou, J.P. (2007), "Vibration control of stay cables of Shandong Binzhou Yellow River Highway Bridge by using magnetorheological fluid dampers", J. Bridge Eng. -ASCE, 12(4), 401-409. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(401).
  31. Liu, M., Song, G.B. and Li, H. (2007), "Non-model-based semiactive vibration suppression of stay cables using magnetorheological fluid damper", Smart. Mater. Struct., 16(4), 1447-1452. https://doi.org/10.1088/0964-1726/16/4/059.
  32. Lu, L., Duan, Y.F., Spencer, B.F., Jr., Lu, X. and Zhou, Y. (2017). "Inertial mass damper for mitigating cable vibration", Struct. Control Health Monit., 24(10), 1-12. https:/doi.org/10.1002/stc.1986.
  33. Luo, J.N., Jiang. J.Z. and Macdonald J.H.G. (2019), "Cable vibration suppression with inerter-based absorbers", J. Eng. Mech., 145(2), 04018134. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001554.
  34. Main, J.A. and Jones, N.P. (2002), "Free vibration of taut cable with attached damper, I: linear viscous damper", J. Eng. Mech. - ASCE, 128(10), 1062-1071. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1062).
  35. Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass damper", Earthq. Eng. Struct. D., 43(4), 507-527. https://doi.org/10.1002/eqe.2355.
  36. Ni, Y.Q., Chen, Y., Ko, J.M. and Cao, D.Q. (2002), "Neuro-control of cable vibration using semi-active magnetorheological dampers", Eng. Struct., 24(3), 295-307. https://doi.org/10.1016/S0141-0296(01)00096-7.
  37. Or, S.W., Duan, Y.F., Ni Y.Q., Chen, Z.H. and Lam, K.H. (2008), "Development of magnetorheological dampers with embedded piezoelectric force sensors for structural vibration control", J. Intel. Mat. Syst. Str., 19(11), 1327-1338. https://doi.org/10.1142/9789812771209_0047.
  38. Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng. - ASCE, 119, 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961).
  39. Palomera-Arias, R., Connor, J.J. and Ochsendorf, J.A. (2008), "Feasibility study of passiveelectromagnetic damping systems", J. Struct. Eng.-ASCE, 134, 164-170. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(164)
  40. Pradono, M.H., Iemura, H. Igarashi, A., Toyooka, A. and Kalantari, A. (2009), "Passively controlled MR damper in the benchmark structural control problem for seismically excited highway bridge", Struct. Control Health Monit., 16(6), 626-638. https://doi.org/10.1002/stc.341.
  41. Sapinski, B. (2008), "An experimental electromagnetic induction device for a magnetorheological damper", J. Theor. App. Mech. -POL, 46(4), 933-947.
  42. Shen, W.A., Zhu, S.Y. and Zhu, H.P. (2016), "Experimental study on using electromagnetic devices on bridge stay cables for simultaneous energy harvesting and vibration damping", Smart Mater. Struct., 25(6), 065011, 17. https://doi.org/10.1088/0964-1726/25/6/065011.
  43. Shi, X., Zhu, S.Y., Li, J.Y. and Spencer, B.F., Jr. (2016), "Dynamic behavior of stay cables with passive negative stiffness dampers", Smart. Mater. Struct., 25(7), 075044. https://doi.org/10.1088/0964-1726/25/7/075044
  44. Shi, X., Zhu, S.Y. and Spencer, B.F. (2017), "Experimental study on passive negative stiffness damper for cable vibration mitigation", J. Eng. Mech. - ASCE, 143(9), 04017070. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001289.
  45. Shi, X. and Zhu S.Y. (2018), "Dynamic characteristics of stay cables with inerter dampers", J. Sound Vib., 423, 287-305. https://doi.org/10.1016/j.jsv.2018.02.042.
  46. Sodano, H.A. and Bae, J.S. (2004), "Eddy current damping in structures", Shock Vib. Digest, 36(6), 469-478. https://doi.org/10.1177/0583102404048517.
  47. Spencer, B.F., Dyke, S.J., Sain, M.K., et al (1997), "Phenomenological model of a magnetorheological damper", J. Eng. Mech. - ASCE, 123(3), 230-238. https://doi.org/10.4271/2006-01-2520.
  48. Wang, X.Y., Ni, Y.Q., Ko, J.M., et al. (2005),"Optimal design of viscous dampers for multi-mode vibration control of bridge cables", Eng.Struct.,27(5), 792-800. https://doi.org/10.1016/j.engstruct.2004.12.013.
  49. Wang, Z.H., Chen, Z.Q., Gao, H., et al. (2018), "Development of a self-powered magnetorheological damper system for cable vibration control", Appl. Sci., 8, 1-17. https://doi.org/10.3390/app8010118.
  50. Wang, Z.H., Gao, H., Fan, B.Q. and Chen, Z.Q. (2019), "Inertial mass damper for vibration control of cable with sag", J. Low. Freq. Noise V. A., 1-12.
  51. Weber, F. and Boston, C. (2011), "Clipped viscous damping with negative stiffness for semi-active cable damping", Smart. Mater. Struct., 20(4), 045007. https://doi.org/10.1088/0964-1726/20/4/045007.
  52. Weber, F. and Distl, H. (2015a) "Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers", Struct. Control Health Monit., 22(2), 237-254. https://doi.org/10.1002/stc.1671.
  53. Weber, F. and Distl, H. (2015b), "Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: Approximate collocated control solution", Smart Mater. Struct., 24(11), 115015. https://doi.org/10.1088/0964-1726/24/11/115015.
  54. Xu, Y. L. and Yu, Z. (1998), "Vibration of inclined sag cables with oil dampers in cable stayed bridges", J. Bridge Eng., 3(4), 194-203. https:/doi.org/10.1061/(ASCE)1084-0702(1998)3:4(194).
  55. Zhu, H.P., Li, Y.M., Shen, W.A. and Zhu, S.Y. (2019), "Mechanical and energy-harvesting model for electromagnetic inertial mass dampers", Mech. Syst. Signal. Pr., 120, 203-220. https://doi.org/10.1016/j.ymssp.2018.10.023.
  56. Zhu, S.Y., Shen, W.A., Xu, Y.L. and Lee, W.C. (2012), "Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing", Eng. Sturct., 34, 198-212. https://doi.org/10.1016/j.engstruct.2011.09.024.
  57. Zhou, P. and Li, H. (2016), "Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations" , Struct. Control Health Monit., 23(4), 764-782. https://doi.org/10.1002/stc.1809.
  58. Zhou, H.J., Sun, L. and Xing, F. (2014), "Damping of full-scale stay cable with viscous damper: Experimentand analysis", Adv. Struct. Eng., 17(2), 265-274. https://doi.org/10.1260/1369-4332.17.2.265.
  59. Zhou, H. J., Yang X., Sun, L.M., et al. (2015), "Free vibrations of a two-cable network with near-support dampers and a crosslink", Struct. Control Health Monit., 22(9), 1173-1192. https://doi.org/10.1002/stc.1738.

피인용 문헌

  1. Damping enhancement of the inerter on the viscous damper in mitigating cable vibrations vol.28, pp.1, 2019, https://doi.org/10.12989/sss.2021.28.1.089