DOI QR코드

DOI QR Code

Experimental investigation on multi-mode vortex-induced vibration control of stay cable installed with pounding tuned mass dampers

  • Liu, Min (Key Lab of Intelligent Disaster Mitigation and Control for Civil Infrastructure (Harbin Institute of Technology), Ministry of Industry and Information) ;
  • Yang, Wenhan (Key Lab of Intelligent Disaster Mitigation and Control for Civil Infrastructure (Harbin Institute of Technology), Ministry of Industry and Information) ;
  • Chen, Wenli (Key Lab of Intelligent Disaster Mitigation and Control for Civil Infrastructure (Harbin Institute of Technology), Ministry of Industry and Information) ;
  • Li, Hui (Key Lab of Intelligent Disaster Mitigation and Control for Civil Infrastructure (Harbin Institute of Technology), Ministry of Industry and Information)
  • 투고 : 2018.09.25
  • 심사 : 2019.01.17
  • 발행 : 2019.06.25

초록

In this paper, pounding tuned mass dampers (PTMDs) were designed to mitigate the multi-mode vortex-induced vibration (VIV) of stay cable utilizing the viscous-elastic material's energy-dissipated ability. The PTMD device consists of a cantilever metal rod beam, a metal mass block and a specially designed damping element covered with viscous-elastic material layer. Wind-tunnel experiment on VIV of stay cable model was set up to validate the effectiveness of the PTMD on multi-mode VIV mitigation of stay cable. By analyzing and comparing testing results of all testing cases, it could be verified that the PTMD with viscous-elastic pounding boundary can obviously mitigate the VIV amplitude of the stay cable. Moreover, the installed location and the design parameters of the PTMD device based on the controlled modes of the primary stay cable, would have a certain extent suppression on the other modal vibration of the stay cable, which means that the designed PTMDs are effective among a large band of frequency for the multi-mode VIV control of the stay cable.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundations of China

참고문헌

  1. Brika, D. and Laneville, A. (1993), "Vortex-induced vibrations of a long flexible circular cylinder", J. Fluid Mech., 250, 481-508. https://doi.org/10.1017/S0022112093001533.
  2. Cai, C.S., Wu, W.J. and Araujo, M. (2007), "Cable vibration reduction with a TMD-MR system: experiment exploration", J. Struct. Eng. -ASCE, 133(5), 629-637. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(629)
  3. Chang, C.C., Gu, M. and Tang, K.H. (2003), "Tuned mass dampers for dual-mode buffeting control of bridge", J. Bridge. Eng., 8(4), 237-240. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:4(237).
  4. Chen, S.R. and Cai, C.S. (2004), "Coupled vibration control with tuned mass damper for long-span bridges", J. Sound Vib., 278(1-2), 449-459. https://doi.org/10.1016/j.jsv.2003.11.056
  5. Chen, W.L., Zhang, Q.Q., Li, H. and Hu, H. (2015), "An experimental investigation on vortex induced vibration of a flexible inclined cable under a shear flow", J. Fluids Struct., 54, 297-311. https://doi.org/10.1016/j.jfluidstructs.2014.11.007
  6. Chen, Z.Q., Wang, X.Y., Ko, J.M., Ni, Y.Q., Spencer, B.F., Yang, G. and Hu, J.H. (2004), "MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge", Wind Struct., 7(5), 293-304. http://dx.doi.org/10.12989/was.2004.7.5.293.
  7. Cheng, C.C. and Wang, J.Y. (2003), "Free vibration analysis of a resilient pounding damper", Int. J. Mech. Sci., 45(4), 589-604. https://doi.org/10.1016/S0020-7403(03)00116-4
  8. Cheng, J. and Xu, H. (2006), "Inner mass pounding damper for attenuating structure vibration", Int. J. Solids Struct., 43(17), 5355-5369. https://doi.org/10.1016/j.ijsolstr.2005.07.026.
  9. Collette, F.S. (1998), "A combined tuned absorber and pendulum pounding damper under random excitation", J. Sound Vib., 216(2), 199-213. https://doi.org/10.1006/jsvi.1997.1666.
  10. Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2005), "State-derivative feedback control of cable vibration using semi-active MR dampers", Comput.- Aided Civ. Inf., 20(6), 431-449. https://doi.org/10.1111/j.1467-8667.2005.00396.x.
  11. Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2006), "Cable vibration control using Magneto-rheological (MR) dampers", J. Intel. Mat. Syst. Str., 17(4), 321-325. https://doi.org/10.1142/9789812702197_0121.
  12. Duan, Y.F., Tao, J.J., Zhang, H.M., Wang, S.M. and Yun, C.B. (2018), "Real-time hybrid simulation based on vector form intrinsic finite element and field programmable gate array", Struct. Control Health., e2277, https://doi.org/10.1002/stc.2277.
  13. Ema, S. and Marui, E. (1994), "A fundamental study on impact pounding dampers", Int. J. Mach. Tool. Manu., 34(3), 407-421. https://doi.org/10.1016/0890-6955(94)90009-4
  14. Hover, F.S., Miller S.N. and Triantafyllou M.S. (1997), "Vortexinduced oscillations in inclined cables", J. Wind Eng. Ind. Aerod., 99(3), 203-211.
  15. Huera-Huarte, F.J. and Bearman, P.W. (2009), "Wake structures and vortex-induced vibrations of a long flexible cylinder-Part 1: Dynamic response", J. Fluids Struct., 25(6), 969-990. https://doi.org/10.1016/j.jfluidstructs.2009.03.007.
  16. Igusa, T. and Xu, K. (1994), "Vibration control using multiple tuned mass dampers", J. Sound Vib., 175(4), 491-503. https://doi.org/10.1006/jsvi.1994.1341.
  17. Kareem, A. and Sun, W. (1987), "Stochastic response of structures with fluid-containing appendages", J. Sound. Vib., 119(3), 389-408. https://doi.org/10.1016/0022-460X(87)90405-6.
  18. Li, H., Liu, M. and Li, J.H. (2007), "Vibration control of stay cables of the Shandong Binzhou Yellow River Highway Bridge by using magneto-rheological fluid dampers", J. Bridge Eng., 12(4), 401-409. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(401).
  19. Li, H., Liu, M. and Ou, J.P. (2008), "Negative stiffness characteristics of active and semi-active control systems of stay cables", Struct. Control Health., 15(2), 120-142. https://doi.org/10.1002/stc.200.
  20. Li, H.N. and Ni, X.L. (2007), "Optimization of non-uniformly distributed multiple tuned mass damper", J. Sound. Vib., 308(1-2), 80-97. https://doi.org/10.1016/j.jsv.2007.07.014.
  21. Li, H.N., Zhang, P., Song, G.B., Patil, D. and Mo, Y.L. (2015), "Robustness study of the pounding tuned mass damper for vibration control of subsea jumpers", Smart Mater. Struct., 24(9), 095001. https://doi.org/10.1088/0964-1726/24/9/095001
  22. Li, K. and Darby, A.P. (2006), "An experimental investigation into the use of a buffered pounding damper", J. Sound Vib., 291(3-5), 844-860. https://doi.org/10.1016/j.jsv.2005.06.043.
  23. Lin, Y.Y., Cheng, C.M. and Lee C.H. (2000), "A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridge", Eng. Struct., 22(9), 1195-1204. https://doi.org/10.1016/S0141-0296(99)00049-8.
  24. Liu, M.Y., Chiang, W.L., Hwang, J.H. and Chu, C.R. (2000), "Wind-induced vibration of high-rise building with tuned mass damper including soil-structure interaction", J. Wind Eng. Ind. Aerod., 96(6-7), 1092-1102. https://doi.org/10.1016/j.jweia.2007.06.034.
  25. Lu, L., Duan, Y.F., Spencer, B.F., Lu, X.L. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Struct. Control Health., 24, e1986, https://doi: 10.1002/stc.1986.
  26. Matsumoto, M., Daito, Y., Kanamura T., Shigemura, Y., Sakuma, S. and Ishizaki, H. (1998), "Wind-induced vibration of cables of cable-stayed bridges", J. Wind Eng. Ind. Aerod., 74-76(2), 1015-1027. https://doi.org/10.1016/S0167-6105(98)00093-2.
  27. Matsumoto, M., Yagi, T. and Tsushima D. (2001), "Vortex-induced cable vibration of cable-stayed bridges at high reduced wind velocity", J. Wind Eng. Ind. Aerod., 89(7-8), 633-647. https://doi.org/10.1016/S0167-6105(01)00063-0.
  28. Or, S.W., Duan, Y.F., Ni, Y.Q., Chen, Z.H. and Lam, K.H. (2008), "Development of Magnetorheological dampers with embedded piezoelectric force sensors for structural vibration control", J. Intel. Mat. Syst. Str., 19(11), 1327-1338. https://doi.org/10.1177/1045389X07085673.
  29. Ormondroyd, J. and Den Hartog, J.P. (1928), "The theory of the dynamic vibration absorber", J. Appl. Mech. - T ASCE, 50(7), 9-22.
  30. Song, G.B., Zhang, P., Li, L.Y., Singla, M. and Mo, Y.L. (2016), "Vibration control of a pipeline structure using pounding tuned mass damper", J. Eng. Mech - ASCE, 142(6), 04016031. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001078.
  31. Tian, L., Yu, Q. and Ma, R. (2013), "Study on seismic control of power transmission tower-line coupled system under multicomponent excitations", Math, Probl. Eng., 829415. http://dx.doi.org/10.1155/2013/829415.
  32. Violette, R., Langre, E.D. and Szydlowski, J. (2007), "Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments", Comput. Struct., 85(11-14), 1134-1141. https://doi.org/10.1016/j.compstruc.2006.08.005.
  33. Wang, X.Y., Ni, Y.Q., Ko, J.M. and Chen, Z.Q. (2005), "Optimal design of viscous dampers for multi-mode vibration control of bridge cables", Eng. Struct., 27(5), 792-800. https://doi.org/10.1016/j.engstruct.2004.12.013.
  34. Warburton, G.B. and Ayorinde, E.O. (1980), "Optimum absorber parameters for simple systems", Earthq. Eng. Struct. D., 8(3), 197-217. https://doi.org/10.1002/eqe.4290080302.
  35. Weber, F. and Maslanka, M. (2012), "Frequency and damping adaptation of a TMD with controlled MR damper", Smart Mater. Struct., 21(5), 055011. https://doi.org/10.1088/0964-1726/21/5/055011
  36. Zemp, R., De La Llera, J.C. and Almazan, J.L. (2015), "Tall building vibration control using a TM-MR damper assembly", Earthq. Eng. Struct. D., 40(3), 257-271. https://doi.org/10.1002/eqe.1033.
  37. Zhang, P., Song, G.B., Li, H.N. and Lin, Y.X. (2013), "Seismic control of power transmission tower using pounding TMD", J. Eng. Mech. - ASCE, 139(10), 1395-1406. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000576.
  38. Zuo, L. and Nayfeh, S.A. (2005), "Optimization of the individual stiffness and damping parameters in multiple-tuned-massdamper system", J. Vib. Acoust., 127(1), 77-83. https://doi.org/10.1115/1.1855929

피인용 문헌

  1. Damping enhancement of the inerter on the viscous damper in mitigating cable vibrations vol.28, pp.1, 2019, https://doi.org/10.12989/sss.2021.28.1.089