DOI QR코드

DOI QR Code

Buckling analysis of arbitrary point-supported plates using new hp-cloud shape functions

  • Jamshidi, Sajad (Department of Civil Engineering, University of Guilan) ;
  • Fallah, N. (Faculty of Civil Engineering, Babol Noshirvani University of Technology)
  • Received : 2019.01.15
  • Accepted : 2019.03.17
  • Published : 2019.06.25

Abstract

Considering stress singularities at point support locations, buckling solutions for plates with arbitrary number of point supports are hard to obtain. Thus, new Hp-Cloud shape functions with Kronecker delta property (HPCK) were developed in the present paper to examine elastic buckling of point-supported thin plates in various shapes. Having the Kronecker delta property, this specific Hp-Cloud shape functions were constructed through selecting particular quantities for influence radii of nodal points as well as proposing appropriate enrichment functions. Since the given quantities for influence radii of nodal points could bring about poor quality of interpolation for plates with sharp corners, the radii were increased and the method of Lagrange multiplier was used for the purpose of applying boundary conditions. To demonstrate the capability of the new Hp-Cloud shape functions in the domain of analyzing plates in different geometry shapes, various test cases were correspondingly investigated and the obtained findings were compared with those available in the related literature. Such results concerning these new Hp-Cloud shape functions revealed a significant consistency with those reported by other researchers.

Keywords

References

  1. Abdelaziz, H. H., Meziane, M. A. A., Bousahla, A. A., Tounsi, A., Mahmoud, S. R. and Alwabli, A. S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. http://dx.doi.org/10.12989/scs.2017.25.6.693.
  2. Allen, H.G. and Bulson, P.S., (1980), Background to Buckling, McGraw Hill, London, England.
  3. Bapat, A.V. and Venkatramani, N. (2010), "A new approach for the representation of a point support in the analysis of plates", J. Sound Vib., 120, 107-125. https://doi.org/10.1016/0022-460X(88)90337-9.
  4. Bathe, K.J. and Suvranu, D.E. (2001), "The method of finite spheres with improved numerical integration", Comput. Struct., 79, 2183-2196. https://doi.org/10.1016/S0045-7949(01)00124-9.
  5. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A. A. and Mahmoud, S. R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. http://dx.doi.org/10.12989/scs.2017.25.3.257.
  6. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element free Galerkin method", J. Numeric. Methods Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205.
  7. Bourada, F., Amara, K., Bousahla, A. A., Tounsi, A. and Mahmoud, S. R. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. http://dx.doi.org/10.12989/sem.2018.68.6.661.
  8. Chen, J., Tang, W., Huang, P. and Xu, L. (2016), "A mesh-free analysis method of structural elements of engineering structures based on B-spline wavelet basis function", Struct. Eng. Mech., 57(2).
  9. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S. R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. http://dx.doi.org/10.12989/sss.2017.19.3.289.
  10. Dastjerdi, R.M. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., 57(3), 441-456. https://doi.org/10.12989/sem.2016.57.3.441
  11. Do, V.N.V. and Lee, C.H. (2018), "Quasi-3D higher-order shear deformation theory for thermal buckling analysis of FGM plates based on a meshless method", Aerosp. Sci. Tech., 82, 450-465. https://doi.org/10.1016/j.ast.2018.09.017.
  12. Duarte, C.A.M. and Oden, J.T. (1995), "Hp clouds-a meshless method to solve boundary-value problems", Technical Report 95-05; TICAM, The University of Texas, Austin, USA, May.
  13. Garcia, O., Fancello, E.A., Barcellos, S.D. and Duarte, C.A. (2000), "Hp-Clouds in Mindlin's thick plate model", J. Numeric. Methods Eng., 47, 1381-1400. https://doi.org/10.1002/(SICI)1097-0207(20000320)47:8<1381::AID-NME833>3.0.CO;2-9
  14. Hedayati, P., Azhari, M., Shahidi, A.R. and Bradford, M.A., (2007), "On the use of the Lagrange multiplier technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit", J. Struct. Eng. Mech., 26, 673-685. https://doi.org/10.12989/sem.2007.26.6.673
  15. Irons, B.M. (1969), "A conforming quartic triangular element for plate bending", J. Numeric. Method. Eng., 1, 29-45. https://doi.org/10.1002/nme.1620010104.
  16. Jamshidi, S., Azhari, M. and Amoushahi, H. (2015), "Free vibration of plates of various shapes with intermediate point supports by the Hp-Cloud Method and Lagrange Multiplier", J. Struct. Stability Dynam., 16, https://doi.org/10.1142/S0219455415500558.
  17. Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A. and Houari, M.S.A. (2018), "Buckling analysis of orthotropic nanoscale plates resting on elastic foundations", J. Nano Res., 55, 42-56. https://doi.org/10.4028/www.scientific.net/JNanoR.55.42.
  18. Krysl, P. and Belytschko, T. (1995), "Analysis of thin plates by the element-free Galerkin method", Comput. Mech., 17, 26-35. https://doi.org/10.1007/BF00356476.
  19. Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput. Model., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1.
  20. Lei, Z. and Zhang, Y. (2018), "Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers", Struct. Eng. Mech., 28(4), 495-508. http://dx.doi.org/10.12989/scs.2018.28.4.495.
  21. Li, R., Tian, Y., Wang, P, Shi, Y. and Wang, B. (2016), "New analytic free vibration solutions of rectangular thin plates resting on multiple point supports", J. Mech. Sci., 110, 53-61. https://doi.org/10.1016/j.ijmecsci.2016.03.002.
  22. Liu, G.R. and Gu, Y.T. (2005), An Introduction to Mesh-free Methods and Their Programming, Springer, New York, NY, USA.
  23. Liu, G.R. and Liu, M.B. (2003), Smoothed Particle Hydrodynamics a Meshfree Particle Method, World Scientific Pub. Co. Inc., 5 Toh Tuck Link, Singapore.
  24. Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method, basic theory and applications", Comput. Methods Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0.
  25. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A. A. and Mahmoud, S. R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. http://dx.doi.org/10.12989/scs.2017.25.2.157.
  26. Meziane, M. A. A., Abdelaziz, H. H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandwich Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
  27. Naghsh, A., Azhari, M. and Saadatpour, M.M. (2018), "Thermal buckling analysis of point-supported laminated composite plates in unilateral contact", Appl. Math. Model., 56, 564-583. https://doi.org/10.1016/j.apm.2017.12.020.
  28. Nowacki, W. (1953), "Vibration and buckling of rectangular plates simply supported at the periphery and several points inside", Archiwum Mechaniki Stosowanej, 5, 437-454.
  29. Saadatpour, M.M., Azhari, M. amd Bradford, M.A. (1998), "Buckling of arbitrary quadrilateral plates with intermediate supports using the Galerkin method", Comput. Methods Appl. Mech. Eng., 164, 297-306. https://doi.org/10.1016/S0045-7825(98)00030-9.
  30. Shepard, D.A. (1968), "Two-dimensional interpolation function for irregularly spaced data", Proc 23rd Nat Conf ACM, New York, NY, USA. https://doi.org/10.1145/800186.810616.
  31. solution to buckling and vibration problems of orthotropic plates", Eng. Analysis Boundary Element., 37(3), 579-584. https://doi.org/10.1016/j.enganabound.2013.01.007.
  32. Suvranu, D.E. and Bathe, K.J. (2001), "Towards an efficient meshless computational technique: the method of finite spheres", Eng. Comput., 18, 170-192. https://doi.org/10.1108/02644400110365860
  33. Suvranu, D.E. and Bathe, K.J., (2000), "The method of finite spheres", Comput. Mech., 25, 329-345. https://doi.org/10.1007/s004660050481.
  34. Szilard, R. (2004), Theories and Applications of Plate Analysis, John Wiley and Sons. Inc., Hoboken, New Jersey, USA.
  35. Tan, H.K.V., Bettess, P. and Bettess, J.A. (1983), "Elastic buckling of isotropic triangular flat plates by finite elements", Appl. Math. Model., 7, 311-316. https://doi.org/10.1016/0307-904X(83)90130-0.
  36. Taylor, J.L. (1967), "Buckling and vibration of triangular flat plates", J. Royal Aeronautic. Soc., 71, 682-727. https://doi.org/10.1017/S0001924000054415.
  37. Topal, U., Nazarimofrad, E. and Kholerdi, S.E.S. (2018), "Shear buckling analysis of cross-ply laminated plates resting on Pasternak foundation", J. Numeric. Methods Eng., 68(3), 369-375.
  38. Tripathy, B. and Suryanarayan, S. (2008), "Vibration and buckling characteristics of weld-bonded rectangular plates using the flexibility function approach", J. Mech. Sci., 50, 1486-1498. https://doi.org/10.1016/j.ijmecsci.2008.08.005.
  39. Tsiatas, G.C. and Yiotis, A.J. (2013), "A BEM-based meshless
  40. Venugopal, N., Shastry, B.P. and Rao, G.V. (1989), "Stability of square plates resting on four symmetrically placed point supports on diagonals", Comput. Struct., 31, 293-295. https://doi.org/10.1016/0045-7949(89)90233-2.
  41. Wang, C.M. and Liew, K.M. (1994), "Buckling of triangular plates under uniform compression", Eng. Struct., 16, 43-50. https://doi.org/10.1016/0141-0296(94)90103-1.
  42. Wittrick, W.H., (1954), "Symmetrical buckling of right-angled isosceles triangular plates", Aeronautical Quarterly, 5(2), 131-143. https://doi.org/10.1017/S0001925900001141.
  43. Yosida, K. (1978), Fuctional Anal., Springer-Verlag, Heidelberg, Berlin, Germany.
  44. Zhang, L.W., Zhu, P. and Liew, K.M. (2014), "Thermal buckling of functionally graded plates using a local Kriging meshless method", Compos. Struct., 108, 472-492. https://doi.org/10.1016/j.compstruct.2013.09.043.