References
- Dutta, S., Murthy, A.R., Kim, D. and Samui, P. (2017). "Prediction of compressive strength of self-compacting concrete using intelligent computational modelling", Comput. Mater. Continua, 53(2), 157-174.
- Ekman, T. and Kubin, G. (1999), "Nonlinear prediction of mobile radio channels: Measurements and Mars model designs", IEEE International Conference on Acoustics, Speech and Signal Processing, 2667-2670, Arizona, U.S.A., March. https://doi.org/10.1109/ICASSP.1999.761246.
- Engin, S., Ozturk, O. and Okay, F. (2015), "Estimation of ultimate torque capacity of the SFRC beams using ANN", Struct. Eng. Mech., 53(5), 939-956. https://doi.org/10.12989/sem.2015.53.5.939
- Erdem, H. (2017), "Predicting the moment capacity of RC slabs with insulation materials exposed to fire by ANN", Struct. Eng. Mech., 64(3), 339-346. https://doi.org/10.12989/sem.2017.64.3.339.
- Fernandez-Jimenez, A.M., Polomo, A. and Lopez-Hombrados, C. (2006), "Engineering properties of alkali-activated fly ash concrete", ACI Mater. J., 103(2), 106-112.
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Annals Stat., 19(1), 1-67. https://doi.org/10.1214/aos/1176347963
- Guo, X., Shi, H. and Dick, W.A. (2010), "Compressive strength and microstructural characteristics of class C fly ash geopolymer", Cement Concrete Compos., 32(2), 142-147. https://doi.org/10.1016/j.cemconcomp.2009.11.003.
- Hakan Arslan, M. (2009), "Application of ANN to evaluate effective parameters affecting failure load and displacement of RC buildings", Natural Hazards Earth Syst. Sci., 9, 967-977. https://doi.org/10.5194/nhess-9-967-2009.
- Hardjito D., Wallah S.E., Sumajouw D.M.J and Rangan B.V. (2004), "On the development of fly ash-based geopolymer concrete", ACI Mater. J., 101, 467-472.
- Hecht-Nielsen, R. (1990), Neurocomputing, Addison-Wesely Publishing Company, Boston, U.S.A.
- Ince, R. (2004), "Prediction of fracture parameters of concrete by Artificial Neural Networks", Eng. Fracture Mech., 71, 2143-2159. https://doi.org/10.1016/j.engfracmech.2003.12.004.
- Jin, R., Chen, W. and Simpson, T.W. (2000), "Comparative studies of metamodelling techniques under multiple modelling criteria", AIAA J., 2000-4801. https://doi.org/10.1007/s00158-001-0160-4.
- Kamarthi, S.V. and Pittner, S. (1999), "Accelerating neural network training using weight extrapolation", Neural Networks Soc., 12(9), 1285-1299. https://doi.org/10.1016/S0893-6080(99)00072-6.
- Kaur, J. and Kaur, K. (2017), "A fuzzy approach for an IoT-based automated employee performance appraisal", CMC: Comput., Mater. Continua, 53(1), 23-36.
- Loizos, A. and Karlaftis, M.G. (2006), "Neural networks and nonparametric statistical models: A comparative analysis in pavement condition assessment", Adv. Appl. Stat., 6(1), 87-110.
- Mallick, B.K., Denison, D.G. and Smith, A.F. (1999), "Bayesian survival analysis using a MARS model", Biometrics, 55(4), 1071-1077. https://doi.org/10.1111/j.0006-341X.1999.01071.x.
- Mansouri, I., Safa, M., Ibrahim, Z., Kisi, O., Tahir, M.M., Baharom, S. and Azimi, M. (2016), "Strength prediction of rotary brace damper using MLR and MARS", Struct. Eng. Mech., 60(3), 471-488. https://doi.org/10.12989/sem.2016.60.3.471.
- Mohammed, E.H. and Sudhakar, K.V. (2002), "ANN backpropagation prediction model for fracture toughness in microalloy steel", J. Fatigue, 24(9), 1003-1010. https://doi.org/10.1016/S0142-1123(01)00207-9.
- Nii, O.A., Cooger, K. and Mensah, S. (2009), "Multivariate adaptive regression (MARS) and hinged hyperplanes (HHP) for doweled pavement performance modeling", Construct. Build. Mater., 23(9), 3020-3023. https://doi.org/10.1016/j.conbuildmat.2009.04.010.
- Pacheco-Torgal F., Moura, D., Ding, Y. and Jalali, S. (2011), "Composition, strength and workability of alkali-activated metakaolin based mortars", Construct. Build. Mater., 25(9), 3732-3745. https://doi.org/10.1016/j.conbuildmat.2011.04.017.
- Parab, S., Srivastava, S., Samui, P. and Murthy, A.R. (2014), "Prediction of fracture parameters of high strength and ultra high strength concrete beams using Gaussian process regression and Least squares", Comput. Model. Eng. Sci., 101(2), 139-158.
- Prasanna, P.K., Murthy, R.A. and Srinivasu, K. (2018), "Prediction of compressive strength of GGBS based concrete using RVM", Struct. Eng. Mech., 68(6), 691-700. https://doi.org/10.12989/sem.2018.68.6.691.
- Shah, V.S., Shah, H.R., Samui, P. and Murthy, A.R. (2014), "Prediction of fracture parameters of high strength and ultra-high strength concrete beams using minimax probability machine regression and extreme learning machine", Comput. Mater. Continua, 44(2), 73-84.
- Shi, X., Collins, F., Zhao, X. and Wang, Q. (2012), "Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete", J. Hazard. Mater., 20(9), 237-238. https://doi.org/10.1016/j.jhazmat.2012.07.070.
- Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng. Software, 42(10), 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016.
- Sumajouw, D.M.J., Hardjito, D., Wallah, S.E. and Rangan, B.V. (2007), "Fly-ash based geopolymer concrete: study of slender reinforced columns", J. Mater. Sci., 42, 3124-3130. https://doi.org/10.1007/s10853-006-0523-8.
- Widrow, B. and Lehr, M.A. (1990), "30 years of Adoptive Neural Netwoks; Perceptron, Madaline, and Back propagation", Proceedings of the IEEE, 78, 1415-1442. https://doi.org/10.1109/5.58323
- York, T.P and Eaves, L.J (2001), "Common disease analysis using multivariate adaptive splines (MARS): Genetic analysis workshop 12 simulated sequence data", Genet Epidemiol, 21, 649-654. https://doi.org/10.1002/gepi.2001.21.s1.s649.
- Yuvaraj, P., Murthy, A.R., Iyer, N.R., Samui, P. and Sekar, S.K. (2013b), "Multivariate adaptive regression splines model to predict fracture characteristics of high strength and ultra high strength concrete beams", Comput. Mater. Continua, 36(1), 73-97.
- Yuvaraj, P., Murthy, A.R., Iyer, N.R., Samui, P. and Sekar, S.K. (2014b), "Prediction of fracture characteristics of high strength and ultra high strength concrete beams based on relevance vector machine", J. Damage Mech., 23(7), 979-1004. https://doi.org/10.1177/1056789514520796.
- Yuvaraj, P., Murthy, A.R., Iyer, N.R., Sekar, S.K. and Samui, P. (2014a), "ANN model to predict fracture characteristics of high strength and ultra high strength concrete beams", Comput. Mater. Continua, 41(3), 193-213. http://doi.org/10.3970/cmc.2014.041.193.
- Yuvaraj, P., Murthy, A.R., Iyer, N.R., Sekar, S.K. and Samui, P. (2013a), "Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams", Eng. Fracture Mech., 98(1), 29-43. https://doi.org/10.1016/j.engfracmech.2012.11.014.
Cited by
- Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach vol.27, pp.4, 2019, https://doi.org/10.12989/cac.2021.27.4.319
- Microstructural and mechanical characteristics of self-compacting concrete with waste rubber vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.175