DOI QR코드

DOI QR Code

IDEAL RIGHT-ANGLED PENTAGONS IN HYPERBOLIC 4-SPACE

  • Kim, Youngju (Department of Mathematics Education Konkuk University) ;
  • Tan, Ser Peow (Department of Mathematics National University of Singapore)
  • Received : 2018.02.09
  • Accepted : 2019.01.24
  • Published : 2019.07.01

Abstract

An ideal right-angled pentagon in hyperbolic 4-space ${\mathbb{H}}^4$ is a sequence of oriented geodesics ($L_1,{\ldots},L_5$) such that $L_i$ intersects $L_{i+1},i=1,{\ldots},4$, perpendicularly in ${\mathbb{H}}^4$ and the initial point of $L_1$ coincides with the endpoint of $L_5$ in the boundary at infinity ${\partial}{\mathbb{H}}^4$. We study the geometry of such pentagons and the various possible augmentations and prove identities for the associated quaternion half side lengths as well as other geometrically defined invariants of the configurations. As applications we look at two-generator groups ${\langle}A,B{\rangle}$ of isometries acting on hyperbolic 4-space such that A is parabolic, while B and AB are loxodromic.

Keywords

DBSHBB_2019_v56n4_1131_f0001.png 이미지

FIGURE 1. An ideal right-angled pentagon

DBSHBB_2019_v56n4_1131_f0002.png 이미지

FIGURE 2. The horocycle/horosphere pair (C0, S0) assigned to the ideal vertex

DBSHBB_2019_v56n4_1131_f0003.png 이미지

FIGURE 3. A normalized augmented ideal right-angled pentagon (L1, Π2, L3, Π4, L5)

DBSHBB_2019_v56n4_1131_f0004.png 이미지

FIGURE 4. An augmented ideal right-angled pentagon (L1, Π2, L3, Π4, L5) with (C0, S0)

DBSHBB_2019_v56n4_1131_f0005.png 이미지

FIGURE 5. PLP-configurations at p01 and p50)

DBSHBB_2019_v56n4_1131_f0006.png 이미지

FIGURE 6. An ideal right-angled pentagon in hyperbolic 2-space

DBSHBB_2019_v56n4_1131_f0007.png 이미지

FIGURE 7. A normalized augmented pentagon (Π1, L2, Π3, L4, Π5)

DBSHBB_2019_v56n4_1131_f0008.png 이미지

FIGURE 8. An augmented ideal right-angled pentagon with three planes and a horocycle

DBSHBB_2019_v56n4_1131_f0009.png 이미지

FIGURE 9. An ideal right-angled pentagon associated to alinked two-generator group in ℍ2

DBSHBB_2019_v56n4_1131_f0010.png 이미지

FIGURE 10. D: the boundary of the fundamental domain of 1, I3, I5> in ∂ℍ4

DBSHBB_2019_v56n4_1131_f0011.png 이미지

FIGURE 11. The fundamental domain D' in ℝ3

References

  1. L. V. Ahlfors, Old and new in Mobius groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 93-105. https://doi.org/10.5186/aasfm.1984.0901
  2. L. V. Ahlfors, Mobius transformations and Clifford numbers, in Differential geometry and complex analysis, 65-73, Springer, Berlin, 1985.
  3. L. V. Ahlfors, On the fixed points of Mobius transformations in $\mathbb{R}^n$, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15-27. https://doi.org/10.5186/aasfm.1985.1005
  4. A. Basmajian, Constructing pairs of pants, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), no. 1, 65-74. https://doi.org/10.5186/aasfm.1990.1505
  5. A. Basmajian, Generalizing the hyperbolic collar lemma, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 154-158. https://doi.org/10.1090/S0273-0979-1992-00298-7
  6. A. Basmajian and B. Maskit, Space form isometries as commutators and products of involutions, Trans. Amer. Math. Soc. 364 (2012), no. 9, 5015-5033. https://doi.org/10.1090/S0002-9947-2012-05639-X
  7. A. F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, 91, Springer-Verlag, New York, 1983.
  8. R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Universitext, Springer-Verlag, Berlin, 1992.
  9. C. Cao and P. L. Waterman, Conjugacy invariants of Mobius groups, in Quasiconformal mappings and analysis (Ann Arbor, MI, 1995), 109-139, Springer, New York, 1998.
  10. W. Fenchel, Elementary Geometry in Hyperbolic Space, De Gruyter Studies in Mathematics, 11, Walter de Gruyter & Co., Berlin, 1989.
  11. W. M. Goldman, The complex-symplectic geometry of SL(2, $\mathbb{C}$)-characters over surfaces, in Algebraic groups and arithmetic, 375-407, Tata Inst. Fund. Res., Mumbai, 2004.
  12. L. Keen, Collars on Riemann surfaces, in Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), 263-268. Ann. of Math. Studies, 79, Princeton Univ. Press, Princeton, NJ, 1974.
  13. Y. Kim, Quasiconformal stability for isometry groups in hyperbolic 4-space, Bull. Lond. Math. Soc. 43 (2011), no. 1, 175-187. https://doi.org/10.1112/blms/bdq092
  14. Y. Kim, Geometric classification of isometries acting on hyperbolic 4-space, J. Korean Math. Soc. 54 (2017), no. 1, 303-317. https://doi.org/10.4134/JKMS.J150734
  15. C. Kourouniotis, Complex length coordinates for quasi-Fuchsian groups, Mathematika 41 (1994), no. 1, 173-188. https://doi.org/10.1112/S0025579300007270
  16. B. Maskit, Kleinian Groups, Grundlehren der Mathematischen Wissenschaften, 287, Springer-Verlag, Berlin, 1988.
  17. J. R. Parker and I. D. Platis, Complex hyperbolic Fenchel-Nielsen coordinates, Topology 47 (2008), no. 2, 101-135. https://doi.org/10.1016/j.top.2007.08.001
  18. J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, 149, Springer-Verlag, New York, 1994.
  19. C. Series, An extension of Wolpert's derivative formula, Pacific J. Math. 197 (2001), no. 1, 223-239. https://doi.org/10.2140/pjm.2001.197.223
  20. S. P. Tan, Complex Fenchel-Nielsen coordinates for quasi-Fuchsian structures, Internat. J. Math. 5 (1994), no. 2, 239-251. https://doi.org/10.1142/S0129167X94000140
  21. S. P. Tan, Y. L. Wong, and Y. Zhang, Delambre-Gauss formulas for augmented, rightangled hexagons in hyperbolic 4-space, Adv. Math. 230 (2012), no. 3, 927-956. https://doi.org/10.1016/j.aim.2012.03.009
  22. M. Wada, Conjugacy invariants of Mobius transformations, Complex Variables Theory Appl. 15 (1990), no. 2, 125-133. https://doi.org/10.1080/17476939008814442
  23. P. L.Waterman, Mobius transformations in several dimensions, Adv. Math. 101 (1993), no. 1, 87-113. https://doi.org/10.1006/aima.1993.1043