Acknowledgement
Supported by : National Natural Science Foundation of China
References
- J. Brudern, The Davenport-Heilbronn Fourier transform method, and some Diophantine inequalities, in Number theory and its applications (Kyoto, 1997), 59-87, Dev. Math., 2, Kluwer Acad. Publ., Dordrecht, 1999.
- W. Ge and T. Wang, On Diophantine problems with mixed powers of primes, Acta Arith. 182 (2018), no. 2, 183-199. https://doi.org/10.4064/aa170225-23-10
- G. Harman, The values of ternary quadratic forms at prime arguments, Mathematika 51 (2004), no. 1-2, 83-96 (2005). https://doi.org/10.1112/S0025579300015527
- G. Harman and A. Kumchev, On sums of squares of primes II, J. Number Theory 130 (2010), no. 9, 1969-2002. https://doi.org/10.1016/j.jnt.2010.03.010
- L.-K. Hua, Some results in the additive prime-number theory, Quart. J. Math. Oxford Ser. (2) 9 (1938), no. 1, 68-80. https://doi.org/10.1093/qmath/os-9.1.68
- A. Languasco and A. Zaccagnini, A Diophantine problem with a prime and three squares of primes, J. Number Theory 132 (2012), no. 12, 3016-3028. https://doi.org/10.1016/j.jnt.2012.06.015
- W. Li and T. Wang, Diophantine approximation with four squares and one Kth power of primes, J. Math. Sci. Adv. Appl. 6 (2010), no. 1, 1-16.
- Z. Liu, Diophantine approximation by unlike powers of primes, Int. J. Number Theory 13 (2017), no. 9, 2445-2452. https://doi.org/10.1142/S1793042117501330
- Q. Mu, Diophantine approximation with four squares and one kth power of primes, Ramanujan J. 39 (2016), no. 3, 481-496. https://doi.org/10.1007/s11139-015-9740-6
- Q. Mu and Y. Qu, A note on Diophantine approximation by unlike powers of primes, Int. J. Number Theory 14 (2018), no. 6, 1651-1668. https://doi.org/10.1142/S1793042118501002
- R. C. Vaughan, The Hardy-Littlewood Method, second edition, Cambridge Tracts in Mathematics, 125, Cambridge University Press, Cambridge, 1997.
- Y. Wang and W. Yao, Diophantine approximation with one prime and three squares of primes, J. Number Theory 180 (2017), 234-250. https://doi.org/10.1016/j.jnt.2017.04.013