References
-
P. C. Baayen, (
$C_2{\oplus}C_2{\oplus}C_2{\oplus}C_{2n}$ )!, Math. Centrum Amsterdam Afd. Zuivere Wisk. 1969 (1969), ZW-006, 21 pp. - N. R. Baeth and A. Geroldinger, Monoids of modules and arithmetic of direct-sum decompositions, Pacific J. Math. 271 (2014), no. 2, 257-319. https://doi.org/10.2140/pjm.2014.271.257
- N. Baeth and J. Hoffmeier, Atoms of the relative block monoid, Involve 2 (2009), no. 1, 29-36. https://doi.org/10.2140/involve.2009.2.29
- N. R. Baeth and R. Wiegand, Factorization theory and decompositions of modules, Amer. Math. Monthly 120 (2013), no. 1, 3-34. https://doi.org/10.4169/amer.math.monthly.120.01.003
- P. Baginski, A. Geroldinger, D. J. Grynkiewicz, and A. Philipp, Products of two atoms in Krull monoids and arithmetical characterizations of class groups, European J. Combin. 34 (2013), no. 8, 1244-1268. https://doi.org/10.1016/j.ejc.2013.05.008
- S. T. Chapman, M. Fontana, A. Geroldinger, and B. Olberding, Multiplicative Ideal Theory and Factorization Theory, Springer Proceedings in Mathematics & Statistics, 170, Springer, 2016.
- W. Gao and A. Geroldinger, Systems of sets of lengths. II, Abh. Math. Sem. Univ. Hamburg 70 (2000), 31-49. https://doi.org/10.1007/BF02940900
-
W. Gao and A. Geroldinger, On zero-sum sequences in
$\mathbb{Z}/n\mathbb{Z}\oplus\mathbb{Z}/n\mathbb{Z}$ , Integers 3 (2003), A8, 45 pp. - W. Gao, A. Geroldinger, and D. J. Grynkiewicz, Inverse zero-sum problems. III, Acta Arith. 141 (2010), no. 2, 103-152. https://doi.org/10.4064/aa141-2-1
- A. Geroldinger, Systeme von Langenmengen, Abh. Math. Sem. Univ. Hamburg 60 (1990), 115-130. https://doi.org/10.1007/BF02941052
- A. Geroldinger, Additive group theory and non-unique factorizations, in Combinatorial number theory and additive group theory, 1-86, Adv. Courses Math. CRM Barcelona, Birkhauser Verlag, Basel, 2009.
- A. Geroldinger, Sets of lengths, Amer. Math. Monthly 123 (2016), no. 10, 960-988. https://doi.org/10.4169/amer.math.monthly.123.10.960
- A. Geroldinger, D. J. Grynkiewicz, and W. A. Schmid, The catenary degree of Krull monoids I, J. Theor. Nombres Bordeaux 23 (2011), no. 1, 137-169. https://doi.org/10.5802/jtnb.754
- A. Geroldinger, D. J. Grynkiewicz, and P. Yuan, On products of k atoms II, Mosc. J. Comb. Number Theory 5 (2015), no. 3, 3-59.
- A. Geroldinger and F. Halter-Koch, Non-unique Factorizations, Pure and AppliedMathematics (Boca Raton), 278, Chapman & Hall/CRC, Boca Raton, FL, 2006.
- A. Geroldinger, S. Ramacher, and A. Reinhart, On v-Marot Mori rings and C-rings, J. Korean Math. Soc. 52 (2015), no. 1, 1-21. https://doi.org/10.4134/JKMS.2015.52.1.001
- A. Geroldinger and I. Z. Ruzsa, Combinatorial number theory and additive group theory, Advanced Courses in Mathematics. CRM Barcelona, Birkhauser Verlag, Basel, 2009.
- A. Geroldinger and P. Yuan, The set of distances in Krull monoids, Bull. Lond. Math. Soc. 44 (2012), no. 6, 1203-1208. https://doi.org/10.1112/blms/bds046
- A. Geroldinger and Q. Zhong, The catenary degree of Krull monoids II, J. Aust. Math. Soc. 98 (2015), no. 3, 324-354. https://doi.org/10.1017/S1446788714000585
- A. Geroldinger and Q. Zhong, The set of minimal distances in Krull monoids, Acta Arith. 173 (2016), no. 2, 97-120.
- A. Geroldinger and Q. Zhong, A characterization of class groups via sets of lengths II, J. Theor. Nombres Bordeaux 29 (2017), no. 2, 327-346. https://doi.org/10.5802/jtnb.983
- D. J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics, 30, Springer, Cham, 2013.
- F. Halter-Koch, Factorization of algebraic integers, Grazer Math. Berichte 191 (1983).
- F. Halter-Koch, Relative block semigroups and their arithmetical applications, Comment. Math. Univ. Carolin. 33 (1992), no. 3, 373-381.
- F. Halter-Koch, Ideal Systems, Monographs and Textbooks in Pure and Applied Mathematics, 211, Marcel Dekker, Inc., New York, 1998.
- J. Kaczorowski, A pure arithmetical characterization for certain fields with a given class group, Colloq. Math. 45 (1981), no. 2, 327-330. https://doi.org/10.4064/cm-45-2-327-330
- W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, PWN-Polish Scientific Publishers, Warsaw, 1974.
- C. Reiher, A proof of the theorem according to which every prime number possesses property B, PhD Thesis, Rostock, 2010 (2010).
- D. E. Rush, An arithmetic characterization of algebraic number fields with a given class group, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 1, 23-28. https://doi.org/10.1017/S0305004100060886
- W. A. Schmid, Arithmetic of block monoids, Math. Slovaca 54 (2004), no. 5, 503-526.
- W. A. Schmid, Periods of sets of lengths: a quantitative result and an associated inverse problem, Colloq. Math. 113 (2008), no. 1, 33-53. https://doi.org/10.4064/cm113-1-4
-
W. A. Schmid, Arithmetical characterization of class groups of the form
$\mathbb{Z}/n\mathbb{Z}\oplus\mathbb{Z}/n\mathbb{Z}$ via the system of sets of lengths, Abh. Math. Semin. Univ. Hambg. 79 (2009), no. 1, 25-35. https://doi.org/10.1007/s12188-008-0010-z - W. A. Schmid, Characterization of class groups of Krull monoids via their systems of sets of lengths: a status report, in Number theory and applications, 189-212, Hindustan Book Agency, New Delhi, 2009.
- W. A. Schmid, A realization theorem for sets of lengths, J. Number Theory 129 (2009), no. 5, 990-999. https://doi.org/10.1016/j.jnt.2008.10.019
- W. A. Schmid, Inverse zero-sum problems II, Acta Arith. 143 (2010), no. 4, 333-343. https://doi.org/10.4064/aa143-4-2
-
W. A. Schmid, The inverse problem associated to the Davenport constant for
$C_2{\oplus}C_2{\oplus}C_{2n}$ , and applications to the arithmetical characterization of class groups, Electron. J. Combin. 18 (2011), no. 1, Paper 33, 42 pp. https://doi.org/10.37236/529 - Q. Zhong, A characterization of finite abelian groups via sets of lengths in transfer Krull monoids, Comm. Algebra 46 (2018), no. 9, 4021-4041. https://doi.org/10.1080/00927872.2018.1430811
- Q. Zhong, Sets of minimal distances and characterizations of class groups of Krull monoids, Ramanujan J. 45 (2018), no. 3, 719-737. https://doi.org/10.1007/s11139-016-9873-2