DOI QR코드

DOI QR Code

Pathologic differential diagnosis of metastatic carcinoma in the liver

  • Park, Jeong Hwan (Department of Pathology, Seoul Metropolitan Government-Seoul National Uiversity Boramae Medical Center) ;
  • Kim, Jung Ho (Department of Pathology, Seoul National University College of Medicine)
  • Received : 2018.08.03
  • Accepted : 2018.08.10
  • Published : 2019.03.25

Abstract

The liver is one of the most common sites to which malignancies preferentially metastasize. Although a substantial number of liver malignancies are primary tumors, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, the metastasis of carcinomas to the liver is relatively common and frequently encountered in clinical settings. Representative carcinomas that frequently metastasize to the liver include colorectal carcinoma, breast carcinoma, neuroendocrine tumors, lung carcinoma, and gastric carcinoma. The diagnostic confirmation of suspected metastatic lesions in the liver is generally achieved through a histopathologic examination of biopsy tissues. Although morphology is the most important feature for a pathologic differential diagnosis of metastatic carcinomas, immunohistochemical studies facilitate the differentiation of metastatic carcinoma origins and subtypes. Useful immunohistochemical markers for the differential diagnosis of metastatic carcinomas in the liver include cytokeratins (CK7, CK19, and CK20), neuroendocrine markers (CD56, synaptophysin, and chromogranin A), and tissue-specific markers (CDX2, SATB2, TTF-1, GCDFP-15, mammaglobin, etc.). Here, we provide a brief review about the pathologic differential diagnosis of major metastatic carcinomas in the liver.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea grant funded by the Korea government (Ministry of Science and ICT) (2016R1C1B2010627).

References

  1. Theise ND, Curado MP, Franceschi S, Hytiroglou P, Kudo M, Park YN, et al. Hepatocellular carcinoma. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. WHO classification of tumours of the digestive system. 4th ed. Lyon: World Health Organization, 2010:205-216.
  2. Nakanuma Y, Curado MP, Franceschi S, Gores G, Paradis V, Sripa B, et al. Intrahepatic cholangiocarcinoma. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. WHO classification of tumours of the digestive system. 4th ed. Lyon: World Health Organization, 2010:217-224.
  3. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 2017;3:524-548. https://doi.org/10.1001/jamaoncol.2016.5688
  4. Jung KW, Won YJ, Kong HJ, Lee ES; Community of Population-Based Regional Cancer Registries. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2015. Cancer Res Treat 2018;50:303-316. https://doi.org/10.4143/crt.2018.143
  5. Iacobuzio-Donahue C, Ferrell L. Secondary tumours of the liver. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. WHO classification of tumours of the digestive system. 4th ed. Lyon: World Health Organization, 2010:251-253.
  6. Motola-Kuba D, Zamora-Valdes D, Uribe M, Mendez-Sanchez N. Hepatocellular carcinoma. An overview. Ann Hepatol 2006;5:16-24. https://doi.org/10.1016/S1665-2681(19)32034-4
  7. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology 2004;127(5 Suppl 1):S5-S16. https://doi.org/10.1053/j.gastro.2004.09.011
  8. Hamilton SR, Bosman FT, Boffetta P, Ilyas M, Morreau H, Nakamura SI, et al. Carcinoma of the colon and rectum. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. WHO classification of tumours of the digestive system. 4th ed. Lyon: World Health Organization, 2010:134-146.
  9. Fleming M, Ravula S, Tatishchev SF, Wang HL. Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol 2012;3:153-173. https://doi.org/10.3978/j.issn.2078-6891.2012.030
  10. van der Geest LG, Lam-Boer J, Koopman M, Verhoef C, Elferink MA, de Wilt JH. Nationwide trends in incidence, treatment and survival of colorectal cancer patients with synchronous metastases. Clin Exp Metastasis 2015;32:457-465. https://doi.org/10.1007/s10585-015-9719-0
  11. Riihimaki M, Hemminki A, Sundquist J, Hemminki K. Patterns of metastasis in colon and rectal cancer. Sci Rep 2016;6:29765. https://doi.org/10.1038/srep29765
  12. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol 2000;13:962-972. https://doi.org/10.1038/modpathol.3880175
  13. Bhargava R, Dabbs DJ. Immunohistology of metastatic carcinoma of unknown primary site. In: Dabbs DJ, ed. Diagnostic immunohistochemistry. 4th ed. Philadelphia: Elsevier Saunders, 2014:204-244.
  14. Werling RW, Yaziji H, Bacchi CE, Gown AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol 2003;27:303-310. https://doi.org/10.1097/00000478-200303000-00003
  15. Kaimaktchiev V, Terracciano L, Tornillo L, Spichtin H, Stoios D, Bundi M, et al. The homeobox intestinal differentiation factor CDX2 is selectively expressed in gastrointestinal adenocarcinomas. Mod Pathol 2004;17:1392-1399. https://doi.org/10.1038/modpathol.3800205
  16. Moskaluk CA, Zhang H, Powell SM, Cerilli LA, Hampton GM, Frierson HF Jr. Cdx2 protein expression in normal and malignant human tissues: an immunohistochemical survey using tissue microarrays. Mod Pathol 2003;16:913-919. https://doi.org/10.1097/01.MP.0000086073.92773.55
  17. Dabir PD, Svanholm H, Christiansen JJ. SATB2 is a supplementary immunohistochemical marker to CDX2 in the diagnosis of colorectal carcinoma metastasis in an unknown primary. APMIS 2018;126:494-500. https://doi.org/10.1111/apm.12854
  18. Kim JH, Rhee YY, Bae JM, Cho NY, Kang GH. Loss of CDX2/CK20 expression is associated with poorly differentiated carcinoma, the CpG island methylator phenotype, and adverse prognosis in microsatelliteunstable colorectal cancer. Am J Surg Pathol 2013;37:1532-1541. https://doi.org/10.1097/PAS.0b013e31829ab1c1
  19. Colditz G, Chia KS. Invasive breast carcinoma: introduction and general features. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, eds. WHO classification of tumours of the breast. 4th ed. Lyon: World Health Organization, 2012:14-31.
  20. Ellis IO, Collins L, Ichihara S, MacGrogan G. Invasive carcinoma of no special type. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, eds. WHO classification of tumours of the breast. 4th ed. Lyon: World Health Organization, 2012:34-38.
  21. DeVita VT Jr, Hellman S, Rosenberg SA. Cancer: principles and practice of oncology. 4th ed. Philadelphia: Lippincott Williams and Wilkins, 1993:1264-1332.
  22. Weigelt B, Peterse JL, van't Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer 2005;5:591-602. https://doi.org/10.1038/nrc1670
  23. Lee YT. Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol 1983;23:175-180. https://doi.org/10.1002/jso.2930230311
  24. Bhargava R, Beriwal S, Dabbs DJ. Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol 2007;127:103-113. https://doi.org/10.1309/TDP92PQLDE2HLEET
  25. Wick MR, Lillemoe TJ, Copland GT, Swanson PE, Manivel JC, Kiang DT. Gross cystic disease fluid protein-15 as a marker for breast cancer: immunohistochemical analysis of 690 human neoplasms and comparison with alpha-lactalbumin. Hum Pathol 1989;20:281-287. https://doi.org/10.1016/0046-8177(89)90137-8
  26. Darb-Esfahani S, von Minckwitz G, Denkert C, Ataseven B, Hogel B, Mehta K, et al. Gross cystic disease fluid protein 15 (GCDFP-15) expression in breast cancer subtypes. BMC Cancer 2014;14:546. https://doi.org/10.1186/1471-2407-14-546
  27. Rindi G, Arnold R, Bosman FT, Capella C, Klimstra DS, Kloppel G, et al. Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. WHO classification of tumours of the digestive system. 4th ed. Lyon: World Health Organization, 2010:13-14.
  28. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 2017;3:1335-1342. https://doi.org/10.1001/jamaoncol.2017.0589
  29. Riihimaki M, Hemminki A, Sundquist K, Sundquist J, Hemminki K. The epidemiology of metastases in neuroendocrine tumors. Int J Cancer 2016;139:2679-2686. https://doi.org/10.1002/ijc.30400
  30. Zuetenhorst JM, Taal BG. Metastatic carcinoid tumors: a clinical review. Oncologist 2005;10:123-131. https://doi.org/10.1634/theoncologist.10-2-123
  31. Capella C, Arnold R, Klimstra DS, Kloppel G, Komminoth P, Solcia E, et al. Neuroendocrine neoplasms of the small intestine. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. WHO classification of tumours of the digestive system. 4th ed. Lyon: World Health Organization, 2010:102-107.
  32. Cai YC, Banner B, Glickman J, Odze RD. Cytokeratin 7 and 20 and thyroid transcription factor 1 can help distinguish pulmonary from gastrointestinal carcinoid and pancreatic endocrine tumors. Hum Pathol 2001;32:1087-1093. https://doi.org/10.1053/hupa.2001.28245
  33. Song JE, Kim BS, Lee CH. Primary hepatic neuroendocrine tumor: a case report and literature review. World J Clin Cases 2016;4:243-247. https://doi.org/10.12998/wjcc.v4.i8.243
  34. Yamaguchi R, Nakashima O, Ogata T, Hanada K, Kumabe T, Kojiro M. Hepatocellular carcinoma with an unusual neuroendocrine component. Pathol Int 2004;54:861-865. https://doi.org/10.1111/j.1440-1827.2004.01770.x
  35. Geisinger K, Moreira AL, Nicholson AG, Rami-Porta R, Travis WD, Yatabe Y, et al. Tumours of the lung. In: Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG, eds. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Lyon: World Health Organization, 2015:9-151.
  36. Nakazawa K, Kurishima K, Tamura T, Kagohashi K, Ishikawa H, Satoh H, et al. Specific organ metastases and survival in small cell lung cancer. Oncol Lett 2012;4:617-620. https://doi.org/10.3892/ol.2012.792
  37. Tamura T, Kurishima K, Nakazawa K, Kagohashi K, Ishikawa H, Satoh H, et al. Specific organ metastases and survival in metastatic non-small-cell lung cancer. Mol Clin Oncol 2015;3:217-221. https://doi.org/10.3892/mco.2014.410
  38. Bauml J, Mick R, Zhang Y, Watt CD, Vachani A, Aggarwal C, et al. Determinants of survival in advanced non--small-cell lung cancer in the era of targeted therapies. Clin Lung Cancer 2013;14:581-591. https://doi.org/10.1016/j.cllc.2013.05.002
  39. Rekhtman N, Ang DC, Sima CS, Travis WD, Moreira AL. Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Mod Pathol 2011;24:1348-1359. https://doi.org/10.1038/modpathol.2011.92
  40. Stenhouse G, Fyfe N, King G, Chapman A, Kerr KM. Thyroid transcription factor 1 in pulmonary adenocarcinoma. J Clin Pathol 2004;57:383-387. https://doi.org/10.1136/jcp.2003.007138
  41. Bishop JA, Sharma R, Illei PB. Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol 2010;41:20-25. https://doi.org/10.1016/j.humpath.2009.06.014
  42. Johansson L. Histopathologic classification of lung cancer: relevance of cytokeratin and TTF-1 immunophenotyping. Ann Diagn Pathol 2004;8:259-267. https://doi.org/10.1016/j.anndiagpath.2004.07.001
  43. Ordonez NG. Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol 2000;24:1217-1223. https://doi.org/10.1097/00000478-200009000-00004
  44. Kaufmann O, Dietel M. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology 2000;36:415-420. https://doi.org/10.1046/j.1365-2559.2000.00890.x
  45. Sturm N, Rossi G, Lantuejoul S, Papotti M, Frachon S, Claraz C, et al. Expression of thyroid transcription factor-1 in the spectrum of neuroendocrine cell lung proliferations with special interest in carcinoids. Hum Pathol 2002;33:175-182. https://doi.org/10.1053/hupa.2002.31299
  46. Lauwers GY, Carneiro F, Graham DY, Curado MP, Franceschi S, Montgomery E, et al. Gastric carcinoma. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. WHO classification of tumours of the digestive system. 4th ed. Lyon: World Health Organization, 2010:48-58.
  47. Riihimaki M, Hemminki A, Sundquist K, Sundquist J, Hemminki K. Metastatic spread in patients with gastric cancer. Oncotarget 2016;7:52307-52316. https://doi.org/10.18632/oncotarget.10740
  48. Hu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A. Gastric cancer: classification, histology and application of molecular pathology. J Gastrointest Oncol 2012;3:251-261. https://doi.org/10.3978/j.issn.2078-6891.2012.021
  49. Park SY, Kim HS, Hong EK, Kim WH. Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary. Hum Pathol 2002;33:1078-1085. https://doi.org/10.1053/hupa.2002.129422
  50. Kim MA, Lee HS, Yang HK, Kim WH. Cytokeratin expression profile in gastric carcinomas. Hum Pathol 2004;35:576-581. https://doi.org/10.1016/j.humpath.2003.12.007
  51. Takami H, Sentani K, Matsuda M, Oue N, Sakamoto N, Yasui W. Cytokeratin expression profiling in gastric carcinoma: clinicopathologic significance and comparison with tumor-associated molecules. Pathobiology 2012;79:154-161. https://doi.org/10.1159/000335694
  52. Gurbuz Y, Kose N. Cytokeratin expression patterns of gastric carcinomas according to Lauren and Goseki classification. Appl Immunohistochem Mol Morphol 2006;14:303-308. https://doi.org/10.1097/00129039-200609000-00008
  53. Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology 2002;40:403-439. https://doi.org/10.1046/j.1365-2559.2002.01387.x
  54. Park SY, Kim BH, Kim JH, Lee S, Kang GH. Panels of immunohistochemical markers help determine primary sites of metastatic adenocarcinoma. Arch Pathol Lab Med 2007;131:1561-1567. https://doi.org/10.5858/2007-131-1561-POIMHD
  55. Koyama T, Sekine S, Taniguchi H, Tsuda H, Ikegami M, Hano H, et al. Hepatocyte nuclear factor 4A expression discriminates gastric involvement by metastatic breast carcinomas from primary gastric adenocarcinomas. Hum Pathol 2011;42:1777-1784. https://doi.org/10.1016/j.humpath.2011.04.002
  56. Chang YC, Nagasue N, Abe S, Taniura H, Kumar DD, Nakamura T. Comparison between the clinicopathologic features of AFP-positive and AFP-negative gastric cancers. Am J Gastroenterol 1992;87:321-325.
  57. Kato T, Takahashi H, Ida Y, Watanabe Y, Sato Y, Takeda B. Immunocytohistochemical studies of AFP producing gastric cancer- -cytomorphology and characteristics of AFP positive cells. Rinsho Byori 1993;41:1024-1030.
  58. Motoyama T, Aizawa K, Watanabe H, Fukase M, Saito K. alpha-Fetoprotein producing gastric carcinomas: a comparative study of three different subtypes. Acta Pathol Jpn 1993;43:654-661.
  59. Terracciano LM, Glatz K, Mhawech P, Vasei M, Lehmann FS, Vecchione R, et al. Hepatoid adenocarcinoma with liver metastasis mimicking hepatocellular carcinoma: an immunohistochemical and molecular study of eight cases. Am J Surg Pathol 2003;27:1302-1312. https://doi.org/10.1097/00000478-200310000-00002
  60. Krasinskas AM, Goldsmith JD. Immunohistology of the gastrointestinal tract. In: Dabbs DJ, ed. Diagnostic immunohistochemistry. 4th ed. Philadelphia: Elsevier Saunders, 2014:508-539.
  61. Wong HH, Chu P. Immunohistochemical features of the gastrointestinal tract tumors. J Gastrointest Oncol 2012;3:262-284. https://doi.org/10.3978/j.issn.2078-6891.2012.019
  62. Park SY, Roh SJ, Kim YN, Kim SZ, Park HS, Jang KY, et al. Expression of MUC1, MUC2, MUC5AC and MUC6 in cholangiocarcinoma: prognostic impact. Oncol Rep 2009;22:649-657.
  63. Wachter DL, Hartmann A, Beckmann MW, Fasching PA, Hein A, Bayer CM, et al. Expression of neuroendocrine markers in different molecular subtypes of breast carcinoma. Biomed Res Int 2014;2014:408459.
  64. Terada T. Carcinoid tumors of digestive organs: a clinicopathologic study of 13 cases. Gastroenterology Res 2009;2:35-37.
  65. Egashira A, Morita M, Kumagai R, Taguchi KI, Ueda M, Yamaguchi S, et al. Neuroendocrine carcinoma of the esophagus: clinicopathological and immunohistochemical features of 14 cases. PLoS One 2017;12:e0173501. https://doi.org/10.1371/journal.pone.0173501
  66. Hammar SP, Dacic S. Immunohistology of lung and pleural neoplasms. In: Dabbs DJ, ed. Diagnostic immunohistochemistry. 4th ed. Philadelphia: Elsevier Saunders, 2014:386-478.
  67. Saqi A, Alexis D, Remotti F, Bhagat G. Usefulness of CDX2 and TTF-1 in differentiating gastrointestinal from pulmonary carcinoids. Am J Clin Pathol 2005;123:394-404. https://doi.org/10.1309/UKN6-PVRK-XHG4-22DA
  68. Bari MF, Brown H, Nicholson AG, Kerr KM, Gosney JR, Wallace WA, et al. BAI3, CDX2 and VIL1: a panel of three antibodies to distinguish small cell from large cell neuroendocrine lung carcinomas. Histopathology 2014;64:547-556. https://doi.org/10.1111/his.12278
  69. Alvarenga CA, Paravidino PI, Alvarenga M, Dufloth R, Gomes M, Zeferino LC, et al. Expression of CK19 in invasive breast carcinomas of special histological types: implications for the use of one-step nucleic acid amplification. J Clin Pathol 2011;64:493-497. https://doi.org/10.1136/jcp.2011.089862
  70. Fujisue M, Nishimura R, Okumura Y, Tashima R, Nishiyama Y, Osako T, et al. Clinical significance of CK19 negative breast cancer. Cancers (Basel) 2012;5:1-11. https://doi.org/10.3390/cancers5010001
  71. Jain R, Fischer S, Serra S, Chetty R. The use of Cytokeratin 19 (CK19) immunohistochemistry in lesions of the pancreas, gastrointestinal tract, and liver. Appl Immunohistochem Mol Morphol 2010;18:9-15. https://doi.org/10.1097/PAI.0b013e3181ad36ea
  72. Richter-Ehrenstein C, Arndt J, Buckendahl AC, Eucker J, Weichert W, Kasajima A, et al. Solid neuroendocrine carcinomas of the breast: metastases or primary tumors? Breast Cancer Res Treat 2010;124:413-417. https://doi.org/10.1007/s10549-010-1178-3
  73. Striebel JM, Dacic S, Yousem SA. Gross cystic disease fluid protein-(GCDFP-15): expression in primary lung adenocarcinoma. Am J Surg Pathol 2008;32:426-432. https://doi.org/10.1097/PAS.0b013e318157a5a6
  74. Wang LJ, Greaves WO, Sabo E, Noble L, Tavares R, Ng T, et al. GCDFP-15 positive and TTF-1 negative primary lung neoplasms: a tissue microarray study of 381 primary lung tumors. Appl Immunohistochem Mol Morphol 2009;17:505-511. https://doi.org/10.1097/PAI.0b013e3181a8e809
  75. Takeda Y, Tsuta K, Shibuki Y, Hoshino T, Tochigi N, Maeshima AM, et al. Analysis of expression patterns of breast cancer-specific markers (mammaglobin and gross cystic disease fluid protein 15) in lung and pleural tumors. Arch Pathol Lab Med 2008;132:239-243. https://doi.org/10.5858/2008-132-239-AOEPOB
  76. Lau SK, Weiss LM, Chu PG. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol 2004;122:61-69. https://doi.org/10.1309/9R66-73QE-C06D-86Y4
  77. Pereira MB, Dias AJ, Reis CA, Schmitt FC. Immunohistochemical study of the expression of MUC5AC and MUC6 in breast carcinomas and adjacent breast tissues. J Clin Pathol 2001;54:210-213. https://doi.org/10.1136/jcp.54.3.210
  78. Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish EC, et al. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol 2005;18:1295-1304. https://doi.org/10.1038/modpathol.3800445
  79. Domori K, Nishikura K, Ajioka Y, Aoyagi Y. Mucin phenotype expression of gastric neuroendocrine neoplasms: analysis of histopathology and carcinogenesis. Gastric Cancer 2014;17:263-272. https://doi.org/10.1007/s10120-013-0281-7
  80. Yu CJ, Shih JY, Lee YC, Shun CT, Yuan A, Yang PC. Sialyl Lewis antigens: association with MUC5AC protein and correlation with postoperative recurrence of non-small cell lung cancer. Lung Cancer 2005;47:59-67. https://doi.org/10.1016/j.lungcan.2004.05.018
  81. Lopez-Ferrer A, Curull V, Barranco C, Garrido M, Lloreta J, Real FX, et al. Mucins as differentiation markers in bronchial epithelium. Squamous cell carcinoma and adenocarcinoma display similar expression patterns. Am J Respir Cell Mol Biol 2001;24:22-29. https://doi.org/10.1165/ajrcmb.24.1.4294
  82. Comperat E, Zhang F, Perrotin C, Molina T, Magdeleinat P, Marmey B, et al. Variable sensitivity and specificity of TTF-1 antibodies in lung metastatic adenocarcinoma of colorectal origin. Mod Pathol 2005;18:1371-1376. https://doi.org/10.1038/modpathol.3800422
  83. Xu B, Thong N, Tan D, Khoury T. Expression of thyroid transcription factor-1 in colorectal carcinoma. Appl Immunohistochem Mol Morphol 2010;18:244-249. https://doi.org/10.1097/PAI.0b013e3181c29407
  84. Bae JM, Kim JH, Park JH, Park HE, Cho NY, Kang GH. Clinicopathological and molecular implications of aberrant thyroid transcription factor-1 expression in colorectal carcinomas: an immunohistochemical analysis of 1319 cases using three different antibody clones. Histopathology 2018;72:423-432. https://doi.org/10.1111/his.13398
  85. Robens J, Goldstein L, Gown AM, Schnitt SJ. Thyroid transcription factor-1 expression in breast carcinomas. Am J Surg Pathol 2010;34:1881-1885. https://doi.org/10.1097/PAS.0b013e3181f884e8
  86. Ni YB, Tsang JY, Shao MM, Chan SK, Tong J, To KF, et al. TTF-1 expression in breast carcinoma: an unusual but real phenomenon. Histopathology 2014;64:504-511. https://doi.org/10.1111/his.12287
  87. Du EZ, Goldstraw P, Zacharias J, Tiffet O, Craig PJ, Nicholson AG, et al. TTF-1 expression is specific for lung primary in typical and atypical carcinoids: TTF-1-positive carcinoids are predominantly in peripheral location. Hum Pathol 2004;35:825-831. https://doi.org/10.1016/j.humpath.2004.02.016
  88. Choi SM, Furth EE, Zhang PJ. Unexpected TTF-1 positivity in a subset of gastric adenocarcinomas. Appl Immunohistochem Mol Morphol 2016;24:603-607. https://doi.org/10.1097/pai.0000000000000244
  89. Pegolo E, Machin P, Damante G, Di Loreto C. TTF-1 positivity in 2 cases of adenocarcinoma of the gastrointestinal tract. Appl Immunohistochem Mol Morphol 2014;22:e27-e31. https://doi.org/10.1097/PAI.0b013e318229e0a3

Cited by

  1. Higher expression of SATB2 in hepatocellular carcinoma of African Americans determines more aggressive phenotypes than those of Caucasian Americans vol.23, pp.12, 2019, https://doi.org/10.1111/jcmm.14652
  2. Metastatic breast cancer presenting as acute liver injury: diagnostic dilemma in the setting of suspected hemochromatosis vol.2020, pp.3, 2019, https://doi.org/10.1093/omcr/omaa019
  3. Liquid biopsy-based tumor profiling for metastatic colorectal cancer patients with ultra-deep targeted sequencing vol.15, pp.5, 2019, https://doi.org/10.1371/journal.pone.0232754
  4. Colorectal liver metastases: radiopathological correlation vol.11, pp.1, 2020, https://doi.org/10.1186/s13244-020-00904-4
  5. Prognostic Significance of CDH1 , FN1 and VIM for Early Recurrence in Patients with Colorectal Liver Metastasis After Liver Resection vol.13, 2019, https://doi.org/10.2147/cmar.s287974
  6. Real-time lipid patterns to classify viable and necrotic liver tumors vol.101, pp.3, 2019, https://doi.org/10.1038/s41374-020-00526-w
  7. Cervical lymph node enlargement as the initial manifestation of rectal cancer vol.21, pp.1, 2021, https://doi.org/10.1186/s12876-021-01628-5