참고문헌
- Barghian, M. and Shahabi, A.B. (2007), "A new approach to pendulum base isolation", Struct. Control Hlth. Monit., 14, 177-185. https://doi.org/10.1002/stc.115.
- Buckle, I., Nagarajaiah, S. and Ferrell, K. (1999), "Stability of elastomeric isolation bearings", J. Struct. Eng., 125, 946-954. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(3).
- Calabrese, A., Spizzuoco, M., Strano, S. and Terzo, M. (2019), "Hysteresis models for response history analyses of recycled rubber-fiber reinforced bearings (RR-FRBs) base isolated buildings", Eng. Struct., 178, 635-644. https://doi.org/10.1016/j.engstruct.2018.10.057.
- Chen, P.C. and Wang, S.J. (2016), "Improved control performance of sloped rolling-type isolation devices using embedded electromagnets", Struct. Control Hlth. Monit., 24(1), 1853. https://doi.org/10.1002/stc.1853.
- Chu, J.Y., Ge, N., Chen, L.L. and Zhao, S.Y. (2013), "Study on characteristics of dry friction plate-reset spring seismic isolation system", Appl. Mech. Mater., 353, 1811-1814. https://doi.org/10.4028/www.scientific.net/AMM.353-356.1811.
- Chung, L.L., Yang, C.Y., Chen, H.M. and Lu, L.Y. (2009), "Dynamic behavior of nonlinear rolling isolation system", Struct. Control Hlth. Monit., 16(1), 32-54. https://doi.org/10.1002/stc.305.
- Fenz, D.M. and Constantinou, M.C. (2006), "Behaviour of the double concave Friction Pendulum bearing", Earthq. Eng. Struct. Dyn., 35, 1403-1424. https://doi.org/10.1002/eqe.589.
- Fenz, D.M. and Constantinou, M.C. (2008a), "Modeling triple friction pendulum bearings for response-history analysis", Earthq. Spectra, 24, 1011-1028. https://doi.org/10.1193/1.2982531.
- Fenz, D.M. and Constantinou, M.C. (2008b), "Spherical sliding isolation bearings with adaptive behavior: Theory", Earthq. Eng. Struct. Dyn., 37, 163-183. https://doi.org/10.1002/eqe.750.
- Fenz, D.M. and Constantinou, M.C. (2008c), "Spherical sliding isolation bearings with adaptive behavior: Experimental verification", Earthq. Eng. Struct. Dyn., 37, 185-205. https://doi.org/10.1002/eqe.750.
- Foti, D., Catalan Goni, A. and Vacca, S. (2013) "On the dynamic response of rolling base isolation systems", Struct. Control Hlth. Monit, 20, 639-648. https://doi.org/10.1002/stc.1538.
- Guerreiro, L., Azevedo, J. and Muhr, A.H. (2007), "Seismic tests and numerical modeling of a rolling-ball isolation system", J. Earthq. Eng., 11, 49-66. https://doi.org/10.1080/13632460601123172.
- Hosseini, M. and Farsangi, E.N. (2012), "Telescopic columns as a new base isolation system for vibration control of high-rise buildings", Earthq. Struct., 3(6), 853-67. https://doi.org/10.12989/eas.2012.3.6.853.
- Ismail, M. (2016), "Novel hexapod-based unidirectional testing and FEM analysis of the RNC isolator", Struct. Control Hlth. Monit, 23, 894-922. https://doi.org/10.1002/stc.1817.
- Ismail, M., Rodellar, J. and Ikhouane, F. (2012), "Seismic protection of low- to moderate-mass buildings using RNC isolator", Struct. Control Hlth. Monit., 19, 22-42. https://doi.org/10.1002/stc.421.
- Jangid, R.S. (2000), "Stochastic seismic response of structure isolated by rolling rods", Eng. Struct., 22, 937-946. https://doi.org/10.1016/S0141-0296(99)00041-3.
- Jangid, R.S. and Londhe, Y.B. (1998), "Effectiveness of elliptical rolling rods for base isolation", J. Struct. Eng., ASCE, 124, 469-472. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:4(469).
- Japan Road Association (1980), Specification for Highway Bridges. Part V, Earthquake Resistant Design, Tokyo, Japan.
- Karayel, V., Yuksel, E., Gokce, T. and Sahin, F. (2017), "Spring tube braces for seismic isolation of buildings", Earthq. Eng. Eng. Vib., 16, 219-231. https://doi.org/10.1007/s11803-017-0378-9.
- Losanno, D., Sierra, I.E.M., Spizzuoco, M., Marulanda, J. and Thomson, P. (2019), "Experimental assessment and analytical modeling of novel fiber-reinforced isolators in unbounded configuration", Compos. Struct., 212, 66-82. https://doi.org/10.1016/j.compstruct.2019.01.026.
- Lu, L.Y. and Hsu, C.C. (2013a), "Experimental study of variablefrequency rocking bearings for near-fault seismic isolation", Eng. Struct., 46, 116-129. https://doi.org/10.1016/j.engstruct.2012.07.013.
- Lu, L.Y. and Hsu, C.C. (2013b), "Eccentric rocking bearings with a designable friction property for seismic isolation: experiment and analysis", Earthq. Spectra, 29(3), 869-895. https://doi.org/10.1193/1.4000166.
- Lu, L.Y. and Yang, Y.B. (1997), "Dynamic response of equipment in structures with sliding support", Earthq. Eng. Struct. Dyn., 26(1), 61-76. https://doi.org/10.1002/(SICI)1096-9845(199701)26:1.
- Lu, X., Lu, Q., Lu, W., Zhou, Y. and Zhao, B. (2017), "Shaking table test of a four tower high rise connected with an isolated sky corridor", Struct. Control Hlth. Monit., 25(3), 2109. https://doi.org/10.1002/stc.2109.
- Mokha, A., Constantinou, M. and Reinhorn, A. (1990), "Teflon bearings in base isolation I: Testing", J. Struct. Eng., 116, 438-454. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(438).
- Mostaghel, N. and Khodaverdian, M. (1987), "Dynamics of resilientfriction base isolator (R-FBI)", Earthq. Eng. Struct. Dyn., 15, 379-390. https://doi.org/10.1002/eqe.4290150307.
- Naeim, F. and Kelly, J.M. (1999), Design Of Seismic Isolated Structures, From Theory To Practice, Wiley, New York, USA.
- Nakamura, Y., Saruta, M., Wada, A., Takeuchi, T., Hikone, S. and Takahashi, T. (2011), "Development of the core-suspended isolation system", Earthq. Eng. Struct. Dyn., 40, 429-447. https://doi.org/10.1002/eqe.1036.
- Pranesh, M. and Sinha, R. (2000), "VFPI: An isolation device for aseismic design", Earthq. Eng. Struct. Dyn., 29(5), 603-627. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5.
- Pranesh, M. and Sinha, R. (2002), "Earthquake resistant design of structures using the variable frequency pendulum isolator", J. Struct. Eng., 128(7), 870-880. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(870).
- Quaglini, V., Gandelli, E., Dubini, P. and Limongelli, M.P. (2017), "Total displacement of curved surface sliders under nonseismic and seismic actions: A parametric study", Struct. Control Hlth. Monit., 24(12), 2031. https://doi.org/10.1002/stc.2031.
- Rawat, A., Ummer, N. and Matsagar, V. (2018), "Performance of bidirectional elliptical rolling rods for base isolation of buildings under near-fault earthquakes", Adv. Struct. Eng., 21(5), 675-693. https://doi.org/10.1177/1369433217726896.
- Robinson, W H. (1982), "Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes", Earthq. Eng. Struct. Dyn., 10, 593-604. https://doi.org/10.1002/eqe.4290100408.
- Robinson, WH. and Tucker, A.G. (1977), "A lead-rubber shear damper", Bull. N.Z. Nat. Soc. Earthq. Eng., 3, 93-101.
- Ryan, K.L., Kelly, J.M. and Chopra, A.K. (2005), "Nonlinear model for lead-rubber bearings including axial-load effects", J. Eng. Mech., 131, 1270-1278. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:12(1270).
- Skinner, R.I., Robinson, W.H. and Mcverry, G.H. (1993), An Introduction to Seismic Isolation, Wiley, New York, USA.
- Soni, D.P., Mistry, B.B., Jangid, R.S. and Panchal, V.R. (2011), "Seismic response of the double variable frequency pendulum isolator", Struct. Control Hlth. Monit., 18(4), 450-470. https://doi.org/10.1002/stc.384.
- Spizzuoco, M., Quaglini, V., Calabrese, A., Serino, G. and Zambrano, C. (2016), "Study of wire rope devices for improving the recentering capability of base isolated buildings", Struct. Control Hlth. Monit., 24(6), 1928. https://doi.org/10.1002/stc.1928.
- Tsai, C.S., Lin, Y.C., Chen, W.S. and Su, H.C. (2010), "Tri-directional shaking table tests of vibration sensitive equipment with static dynamics interchangeable-ball pendulum system", Earthq. Eng. Eng. Vib., 9(1), 103-112. https://doi.org/10.1007/s11803-010-9009-4.
- Virginio, Q., Gandelli, E. and Dubini, P. (2016), "Experimental investigation of the re-centering capability of curved surface sliders", Struct. Control Hlth. Monit., 24(2), 1870.
- Warn, G.P. and Whittaker, A.S. (2008), "Vertical earthquake loads on seismic isolation systems in bridges", J. Struct. Eng., 134, 1696-1704. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:11(1696).
- Wei, B., Wang, P., He, X. and Jiang, L. (2018a), "The impact of the convex friction distribution on the seismic response of a springfriction isolation system", KSCE J. Civil Eng., 22(4), 1203-1213. https://doi.org/10.1007/s12205-017-0938-6.
- Wei, B., Wang, P., Yang, M. and Jiang, L. (2017), "Seismic response of rolling isolation systems with concave friction distribution", J. Earthq. Eng., 21, 325-342. https://doi.org/10.1080/13632469.2016.1157530.
- Wei, B., Yang, T., Jiang, L. and He, X. (2018c), "Effects of frictionbased fixed bearings on the seismic vulnerability of a high-speed railway continuous bridge", Adv. Struct. Eng., 21(5), 643-657. https://doi.org/10.1177/1369433217726894.
- Wei, B., Yang, T., Jiang, L. and He, X. (2018e), "Effects of uncertain characteristic periods of ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railway", Bull. Earthq. Eng., 16(9), 3739-3769. https://doi.org/10.1007/s10518-018-0326-8
- Wei, B., Zuo, C., He, X. and Jiang, L. (2018a), "Numerical investigation on scaling a pure friction isolation system for civil structures in shaking table model tests", Int. J. Nonlin. Mech., 98, 1-12. https://doi.org/10.1016/j.ijnonlinmec.2017.09.005.
- Wei, B., Zuo, C., He, X., Jiang, L. and Wang, T. (2018d), "Effects of vertical ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railway", Soil Dyn. Earthq. Eng., 115, 281-290. https://doi.org/10.1016/j.soildyn.2018.08.022.
- Xiong, W., Zhang, S.J., Jiang, L.Z. and Li, Y.Z. (2017), "Introduction of the convex friction system (CFS) for seismic isolation", Struct. Control Hlth. Monit., 24(1), 1861. https://doi.org/10.1002/stc.1861.
- Xiong, W., Zhang, S.J., Jiang, L.Z. and Li, Y.Z. (2018), "The multangular-pyramid concave friction system (mpcfs) for seismic isolation: a preliminary numerical study", Eng. Struct., 160, 383-394. https://doi.org/10.1016/j.engstruct.2017.12.045.
- Zayas, V.A., Low, S.S. and Mahin, S.A. (1990), "A simple pendulum technique for achieving seismic isolation", Earthq. Spectra, 6(2), 317-333. https://doi.org/10.1193/1.1585573.
- Zhou, Q., Lu, X., Wang, Q., Feng, D. and Yao, Q. (1998), "Dynamic analysis on structures base-isolated by a ball system with restoring property", Earthq. Eng. Struct. Dyn., 27, 773-791. https://doi.org/10.1002/(SICI)1096-9845(199808)27:8.