DOI QR코드

DOI QR Code

Shear strengthening of deficient concrete beams with marine grade aluminium alloy plates

  • Abu-Obeidah, Adi S. (Department of Civil Engineering, Rutgers, The State University of New Jersey) ;
  • Abdalla, Jamal A. (Department of Civil Engineering and Materials Science and Engineering Research Institute (MSERI), American University of Sharjah) ;
  • Hawileh, Rami A. (Department of Civil Engineering and Materials Science and Engineering Research Institute (MSERI), American University of Sharjah)
  • Received : 2018.12.30
  • Accepted : 2019.04.19
  • Published : 2019.06.25

Abstract

In this study, high strength aluminum alloys (AA) plates are proposed as a new construction material for strengthening reinforced concrete (RC) beams. The purpose of this investigation is to evaluate AA plate's suitability as externally bonded reinforcing (EBR) materials for retrofitting shear deficient beams. A total of twenty RC beams designed to fail in shear were strengthened with different spacing and orientations. The specimens were loaded with four-points loading till failure. The considered outcome parameters included load carrying capacity, deflection, strain in plates, and failure modes. The results of all tested beams showed an increase up to 37% in the load carrying capacity and also an increase in deflection compared to the control un-strengthened beams. This demonstrated the potential of adopting AA plates as EBR material. Finally, the shear contribution from the AA plates was predicted using the models available in the ACI440-08, TR55 and FIB14 design code for fiber reinforced polymer (FRP) plates. The predicted results were compared to experimental testing data with the ratio of the experimentally measured ultimate load to predicted load, range on the average, between 93% and 97%.

Keywords

Acknowledgement

Supported by : American University of Sharjah

References

  1. AALCO METALS LIMITED (Accessed 15 January 2017) http://www.aalco.co.uk/products/aluminium.aspx
  2. Abdalla, J.A., Abu-Obeidah, A. and Hawileh, R.A. (2011), "Behaviour of shear deficient reinforced concrete beams with externally bonded aluminum alloy plates", The 2011 World Congress on Advances in Structural Engineering and Mechanics, September.
  3. Abdalla, J.A., Abu-Obeidah, A.S., Hawileh, R.A. and Rasheed, H.A. (2016), "Shear strengthening of reinforced concrete beams using externally-bonded aluminum alloy plates: An experimental study", Constr. Build. Mater., 128, 24-37. https://doi.org/10.1016/j.conbuildmat.2016.10.071.
  4. Abdalla, J.A., Hraib, F.H., Hawileh, R.A. and Mirghani, A.M. (2017), "Experimental investigation of bond-slip behavior of aluminum plates adhesively bonded to concrete", J. Adhes. Sci. Technol., 31(1), 82-99. https://doi.org/10.1080/01694243.2016.1204741.
  5. Abdel-Kareem, A.H. (2014), "Shear strengthening of reinforced concrete beams with rectangular web openings by FRP composites", Adv. Concrete Constr., 2(4), 281-300. https://doi.org/10.12989/acc.2014.2.4.281.
  6. Abu-Obeidah, A., Hawileh, R. and Abdalla, J.A. (2012), "Finite element modeling of shear deficient beams bonded with aluminum plates", Proceedings of the Eleventh International Conference on Computational Structures Technology, Dubrovnik, Croatia.
  7. Abu-Obeidah, A., Hawileh, R.A. and Abdalla, J.A. (2015), "Finite element analysis of strengthened RC beams in shear with aluminum plates", Comput. Struct., 147, 36-46. https://doi.org/10.1016/j.compstruc.2014.10.009.
  8. Abu-Obeidah, A.S. (2012), "Behaviour of shear deficient reinforced concrete beams with externally bonded aluminum plates", Master Thesis, American University of Sharjah, Sharjah, UAE.
  9. Adhikary, B.B. and Mutsuyoshi, H. (2006), "Shear strengthening of RC beams with web-bonded continuous steel plates", Constr. Build. Mater., 20(5), 296-307. https://doi.org/10.1016/j.conbuildmat.2005.01.026.
  10. Ahmad, H., Hameed, R., Riaz, M.R. and Gillani, A.A. (2018), "Strengthening of concrete damaged by mechanical loading and elevated temperature", Adv. Concrete Constr., 6(6), 645-658. : https://doi.org/10.12989/acc.2018.6.6.645.
  11. Akroush, N., Almahallawi, T., Seif, M. and Sayed-Ahmed, E.Y. (2017), "CFRP shear strengthening of reinforced concrete beams in zones of combined shear and normal stresses", Compos. Struct., 162, 47-53. https://doi.org/10.1016/j.compstruct.2016.11.075.
  12. Al-Sulaimani, G.J., Sharif, A., Basunbul, I.A., Baluch, M.H. and Ghaleb, B.N. (1994), "Shear repair for reinforced concrete by fiberglass plate bonding", Struct. J., 91(4), 458-464.
  13. Ali, A., Abdalla, J., Hawileh, R. and Galal, K. (2014), "CFRP mechanical anchorage for externally strengthened RC beams under flexure", Phys. Procedia, 55, 10-16. https://doi.org/10.1016/j.phpro.2014.07.002.
  14. Ali, N., Mohamad, N., Jayaprakash, J., Tee, K.F. and Mendis, P. (2016), "Shear strengthening and shear repair of 2-Span continuous RC beams with CFRP strips", J. Compos. Constr., 21(3), 04016099. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000756.
  15. American Concrete Institute. Committee 440 (2002), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures: ACI 440.2 R-02, American Concrete Institute.
  16. ASTM International. Committee B07 on Light Metals and Alloys (2015), Standard Test Methods for Tension Testing Wrought and Cast Aluminum-and Magnesium-alloy Products (metric), ASTM International.
  17. Aykac, S., Kalkan, I., Aykac, B., Karahan, S. and Kayar, S. (2012), "Strengthening and repair of reinforced concrete beams using external steel plates", J. Struct. Eng., 139(6), 929-939. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000714.
  18. Azam, R. and Soudki, K. (2014), "FRCM strengthening of shearcritical RC beams", J. Compos. Constr., 18(5), 04014012. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000464.
  19. Baghi, H. and Barros, J.A. (2016), "Shear strengthening of reinforced concrete T-beams with hybridcomposite plate", J. Compos. Constr., 20(6), 04016036. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000693.
  20. Carolin, A. and Taljsten, B. (2005), "Experimental study of strengthening for increased shear bearing capacity", J. Compos. Constr., 9(6), 488-496. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:6(488).
  21. Carolin, A. and Taljsten, B. (2005), "Theoretical study of strengthening for increased shear bearing capacity", J. Compos. Constr., 9(6), 497-506. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:6(497).
  22. Chaallal, O., Nollet, M.J. and Perraton, D. (1998), "Shear strengthening of RC beams by externally bonded side CFRP strips", J. Compos. Constr., 2(2), 111-113. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(111).
  23. Chajes, M.J., Januszka, T.F., Mertz, D.R., Thomson, T.A. and Finch, W.W. (1995), "Shear strengthening of reinforced concrete beams using externally applied composite fabrics", Struct. J., 92(3), 295-303.
  24. Chajes, M.J., Januszka, T.F., Mertz, D.R., Thomson, T.A. and Finch, W.W. (1995), "Shear strengthening of reinforced concrete beams using externally applied composite fabrics", Struct. J., 92(3), 295-303.
  25. Chakrabortty, A. and Khennane, A. (2014), "Failure mechanisms of hybrid FRP-concrete beams with external filament-wound wrapping", Adv. Concrete Constr., 2(1), 57-75. http://dx.doi.org/10.12989/acc.2014.2.1.057.
  26. Chen, G.M., Li, S.W., Fernando, D., Liu, P.C. and Chen, J.F. (2017), "Full-range FRP failure behaviour in RC beams shearstrengthened with FRP wraps", Int. J. Solid. Struct., 125, 1-21. https://doi.org/10.1016/j.ijsolstr.2017.07.019.
  27. Chen, J.F. and Teng, J.G. (2003), "Shear capacity of fiberreinforced polymer-strengthened reinforced concrete beams: Fiber reinforced polymer rupture", J. Struct. Eng., 129(5), 615-625. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(615).
  28. Comite Europeen de Normalisation (2004), Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, Eurocode 2, EN 1992-1-1: 2004: E.
  29. Dhahir, M.K. (2018), "Strut and tie modeling of deep beams shear strengthened with FRP laminates", Compos. Struct., 193, 247-259. https://doi.org/10.1016/j.compstruct.2018.03.073.
  30. Du Beton, F.I. (2001), "Externally bonded FRP reinforcement for RC structures", Bulletin, 14, 138.
  31. Dursun, T. and Soutis, C. (2014), "Recent developments in advanced aircraft aluminium alloys", Mater. Des., 56, 862-871. https://doi.org/10.1016/j.matdes.2013.12.002.
  32. Editor Report (1965), "The aluminum and concrete controversy. Publication #C650369", Concrete Construction Magazine, The Aberdeen Group.
  33. Esfandiari, S. and Esfandiari, J. (2016), "Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading", Adv. Concrete Constr., 4(4), 319-332. https://doi.org/10.12989/acc.2016.4.4.319.
  34. Foster, R.M., Brindley, M., Lees, J.M., Ibell, T.J., Morley, C.T., Darby, A.P. and Evernden, M.C. (2016), "Experimental investigation of reinforced concrete T-beams strengthened in shear with externally bonded CFRP sheets", J. Compos. Constr., 21(2), 04016086. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000743.
  35. Hawileh, R., Abdalla, J., Nawaz, W., Alzeer, A., Muwafi, R. and Faridi, A. (2014), "Strengthening reinforced concrete beams in flexure using hardwire steel fiber sheets", Proceedings of CICE, Vancouver, Canada, August.
  36. Hawileh, R.A., Nawaz, W. and Abdalla, J.A. (2018), "Flexural behavior of reinforced concrete beams externally strengthened with Hardwire Steel-Fiber sheets", Constr. Build. Mater., 172, 562-573. https://doi.org/10.1016/j.conbuildmat.2018.03.225.
  37. Hawileh, R.A., Nawaz, W., Abdalla, J.A. and Saqan, E.I. (2015), "Effect of flexural CFRP sheets on shear resistance of reinforced concrete beams", Compos. Struct., 122, 468-476. https://doi.org/10.1016/j.compstruct.2014.12.010.
  38. Hawileh, R.A., Rasheed, H.A., Abdalla, J.A. and Al-Tamimi, A.K. (2014), "Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems", Mater. Des., 53, 972-982. https://doi.org/10.1016/j.matdes.2013.07.087.
  39. Hosseinpour, F. and Abbasnia, R. (2014), "Experimental investigation of the stress-strain behavior of FRP confined concrete prisms", Adv. Concrete Constr., 2(3), 177-192. http://dx.doi.org/10.12989/acc.2014.2.3.177.
  40. Hosseinpour, F. and Abdelnabya A.E. (2015), "Statistical evaluation of the monotonic models for FRP confined concrete prisms", Adv. Concrete Constr., 3(3), 161-185. https://doi.org/10.12989/acc.2015.3.3.161.
  41. Islam, M.R., Mansur, M.A. and Maalej, M. (2005), "Shear strengthening of RC deep beams using externally bonded FRP systems", Cement Concrete Compos., 27(3), 413-420. https://doi.org/10.1016/j.cemconcomp.2004.04.002.
  42. Jana, D. and Tepke, D.G. (2010), "Corrosion of aluminum metal in concrete-a case study", The 32nd International Conference on Cement Microscopy, ICMA, March.
  43. Jumaat, M.Z., Rahman, M.A., Alam, M.A. and Rahman, M.M. (2011), "Premature failures in plate bonded strengthened RC beams with an emphasis on premature shear: A review", Int. J. Phys. Sci., 6(2), 156-168. https://doi.org/10.5897/IJPS10.369.
  44. Khalifa, A. and Nanni, A. (2000), "Improving shear capacity of existing RC T-section beams using CFRP composites", Cement Concrete Compos., 22(3), 165-174. https://doi.org/10.1016/S0958-9465(99)00051-7.
  45. Khalifa, A., Gold, W.J., Nanni, A. and MI, A.A. (1998), "Contribution of externally bonded FRP to shear capacity of RC flexural members", J. Compos. Constr., 2(4), 195-202. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(195).
  46. Kissell, J.R. and Ferry, R.L. (2002), A Guide to Their Specifications and Design, John Wiley & Sons, INC.
  47. Linberg, R.I. (1960), Aluminum in Concrete, Publication #C600008, Concrete Construction Magazine, The Aberdeen Group.
  48. McGeary, F.L. (1966), "Performance of aluminium in concrete containing chlorides", J. Proc., 63(2), 247-266.
  49. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539.
  50. Metwally, I.M. (2014), "Three-dimensional finite element analysis of reinforced concrete slabs strengthened with epoxy-bonded steel plates", Adv. Concrete Constr., 2(2), 91-108. http://dx.doi.org/10.12989/acc.2014.2.2.091.
  51. Mirghani, A.M., Abdalla, J.A. and Hawileh, R.A. (2017), "Modeling and simulation of bond-slip behavior of Aluminum Alloy plates adhesively bonded to concrete", Modeling, Simulation, and Applied Optimization (ICMSAO), 2017 7th International Conference on, 1-5.
  52. Rasheed, H.A., Abdalla, J., Hawileh, R. and Al-Tamimi, A.K. (2017), "Flexural behavior of reinforced concrete beams strengthened with externally bonded Aluminum Alloy plates", Eng. Struct., 147, 473-485. https://doi.org/10.1016/j.engstruct.2017.05.067.
  53. Razavi, S.V., Jumaat, M.Z., EI-Shafie, A.H. and Ronagh, H.R. (2015), "Load-deflection analysis prediction of CFRP strengthened RC slab using RNN", Adv. Concrete Constr., 3(2), 91-102. https://doi.org/10.12989/acc.2015.3.2.091.
  54. Sikadur-30(R), https://www.sika-distributor.com/pdf/sikadur30/pdscpd-Sikadur30-us.pdf
  55. Sumathi, A. and Arun Vignesh, S. (2017), "Study on behavior of RCC beams with externally bonded FRP members in flexure", Adv. Concrete Constr., 5(6), 625-638. https://doi.org/10.12989/acc.2017.5.6.625.
  56. Szumigala, M. and Polus, L. (2015), "Applications of aluminium and concrete composite structures", Procedia Eng., 108, 544-549. https://doi.org/10.1016/j.proeng.2015.06.176.
  57. Taljsten, B. and Elfgren, L. (2000), "Strengthening concrete beams for shear using CFRP-materials: evaluation of different application methods", Compos. Part B: Eng., 31(2), 87-96. https://doi.org/10.1016/S1359-8368(99)00077-3.
  58. The Concrete Society (2000), "Design guidance for strengthening concrete structures using fibre composites materials", Technical Report no. 55, 2nd Edition, Report of a Concrete Society Committee, Berkshire, UK.
  59. Triantafillou, T.C. (1998), "Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites", ACI Struct. J., 95, 107-115.
  60. Triantafillou, T.C. and Antonopoulos, C.P. (2000), "Design of concrete flexural members strengthened in shear with FRP", J. Compos. Constr., 4(4), 198-205. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:4(198).
  61. Wang, L. and Su, R.K.L. (2013), "A unified design procedure for preloaded rectangular RC columns strengthened with postcompressed plates", Adv. Concrete Constr., 5(5), 539-561. http://dx.doi.org/10.12989/acc.2013.1.2.163.
  62. Wu, G., Zeng, Y.H., Wu, Z.S. and Feng, W.Q. (2012), "Experimental study on the flexural behavior of RC beams strengthened with steel-wire continuous basalt fiber composite plates", J. Compos. Constr., 17(2), 208-216. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000328.
  63. Xing, G. and Ozbulut, O.E. (2016), "Flexural performance of concrete beams reinforced with aluminum alloy bars", Eng. Struct., 126, 53-65. https://doi.org/10.1016/j.engstruct.2016.07.032.
  64. Zhang, Z. and Hsu, C.T.T. (2005), "Shear strengthening of reinforced concrete beams using carbon-fiber-reinforced polymer laminates", J. Compos. Constr., 9(2), 158-169. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(158).

Cited by

  1. Experimental and Analytical Investigations of the Use of Groove-Epoxy Anchorage System for Shear Strengthening of RC Beams Using CFRP Laminates vol.13, pp.19, 2019, https://doi.org/10.3390/ma13194350
  2. Mechanical Properties of Strengthening 5083-H111 Aluminum Alloy Plates at Elevated Temperatures vol.6, pp.6, 2019, https://doi.org/10.3390/infrastructures6060087