Fig. 1. Schematic diagram of lab-scale device for flotation experiments.
Fig. 2. Single-collector collision efficiency depending on floc size.
Fig. 3. Variation of SCC efficiency in terms of floc size for bubble size range 10 ~ 100 μm.
Fig. 4. Variation of SCC efficiency in terms of floc size for DAF, DCF and DCFS.
Fig. 5. Particle separation efficiency (X) in terms of contact time.
Fig. 6. Comparison of particle separation efficiency between predicted values and observed values under the contact time, 600 sec.
Table 1. Dimension of the DAF and DCF pilot plant and equipment
Table 2. Simulation parameters for contact zone model
참고문헌
- Afkhami, M., Hassanpour, A., and Fairweather, M. (2019) Effect of Reynolds number on particle interaction and agglomeration in turbulent channel flow, Powder Technology, 343, 908-920. https://doi.org/10.1016/j.powtec.2018.11.041
- Dockko, S., Kwak, D. H., and Kim, Y. H. (2004). Analysis of controlling the size of microbubble in DAF, Journal of the Korean Society of Water and Wastewater, 18(2), 235-241. [Korean Literature]
- Edzwald, J. K. (1995). Principles and applications of dissolved air flotation, Water Science and Technology, 31(3-4), 1-23. https://doi.org/10.1016/0273-1223(95)00200-7
- Francois, R. J. (1988). Growth kinetics of hydroxide flocs, Journal of American Water Works Association, 80(6), 92-96. https://doi.org/10.1002/j.1551-8833.1988.tb03060.x
- Grieves R. B., Conger, W. L., and Malone, D. P. (1970). Foam separation clarification of natural waters, Journal of American Water Works Association, 62(5), 304-311. https://doi.org/10.1002/j.1551-8833.1970.tb03909.x
- Han, M. Y., Kim, C. I., and Kwak, D. H. (2009). Measurement of bubble bed depth in dissolved air flotation using a particle counter, Journal of Water Supply: Research and Technology-AQUA, 58(1), 57-63. https://doi.org/10.2166/aqua.2009.110
- Harrhoff, J. and Edzwald, J. K. (2004). Dissolved air flotation modeling: insight and shortcomings, Journal of Water Supply: Research and Technology-AQUA, 53(3), 127-150. https://doi.org/10.2166/aqua.2004.0012
- Kwak, D. H. and Kim, M. S. (2013). Feasibility of carbon dioxide bubbles as a collector in flotation process for water treatment, Journal of Water Supply: Research and Technology-AQUA, 62(1), 52-65. https://doi.org/10.2166/aqua.2013.156
- Kwak, D. H. and Kim, M. S. (2015). Flotation of algae for water reuse and biomass production: Role of zeta potential and surfactant to separate algal particles, Water Science and Technology, 72(5) 762-769. https://doi.org/10.2166/wst.2015.265
- Kwak, D. H., Kim, S. J., Jung, H. J., Park, Y. K., Yoo, Y. H., and Lee, Y. D. (2011). Particle separation and flotation efficiency by dissolved carbon dioxide flotation process, Journal of the Korean Society of Water and Wastewater, 25(4), 471-478. [Korean Literature]
- Kwak, D. H., Jung, H. J., Kim. S. J., Won, C. H., and Lee, J. W. (2005). Serparation charateristices of inorganic particles from rainfalls in dissolved air flotation: A Korean perspective, Separation Science and Technology, 40, 3001-3006. https://doi.org/10.1080/01496390500338144
- Lagvankar, A. L. and Gemmel, R. S. (1968). A size-density relationship for flocs, Journal of American Water Works Association, 60(9), 1040. https://doi.org/10.1002/j.1551-8833.1968.tb03641.x
- Lee, J. Y., Kim, S. J., Yoo, Y. H., Chung, P. G., Kwon, Y. H., Park, Y. K., and Kawk, D. H. (2012). Evaluation of flotation efficiency and particel separation characteristics of carbon dioxdie bubbles and using collision model, Journal of Korean Society on Water Environment, 28(1), 129-136. [Korean Literature]
- Leppinen, D. M. (2000). A kinetic model of dissolved air flotation including the effects of interparticle foreces, Journal of Water Supply: Research and Technology-AQUA, 49(5), 259-268. https://doi.org/10.2166/aqua.2000.0022
- Leppinen, D. M. and Dalziel, S. B. (2004). Bubble size distribution in dissolved air flotation tanks, Journal of Water Supply: Research and Technology-AQUA, 53(8), 531-543. https://doi.org/10.2166/aqua.2004.0042
- Malley, J. P. (1990). Removal of organic halide precursors by dissolved air flotation in conventional water treatment, Journal of Environmental Technology, 11, 1161-1167. https://doi.org/10.1080/09593339009384973
- Malley, J. P. and Edzwald, J. K. (1991). Conceptual model for dissolved-air flotation in drinking water treatment, Journal of Water SRT-AQUA, 40(1), 7-17.
- Michaux, B., Rudolph, M., and Reuter, M. A. (2018) Challenges in predicting the role of water chemistry in flotation through simulation with an emphasis on the influence of electrolytes, Minerals Engineering, 125, 252-264. https://doi.org/10.1016/j.mineng.2018.06.010
- Prakash, R., Majumder, S. K., and Singh, A. (2018) Flotation technique: Its mechanisms and design parameters, Chemical Engineering and Processing - Process Intensification, 127, 249-270. https://doi.org/10.1016/j.cep.2018.03.029
- Xing, Y. Gui, X., Pan, L., Pinchasik, B. E., and Butt, H. J. (2017). Recent experimental advances for understanding bubble-particle attachment in flotation, Advances in Colloid and Interface Science, 246, 105-132. https://doi.org/10.1016/j.cis.2017.05.019
- Yoo, Y. H. (2011). Solid separation and flotation characteristics using carbon dioxide micro-bubble, Master's Thesis, Chonbuk National University, 59-62, 80-91. [Korean Literature]
- Zable, T. (1985). The advantages of dissolved-air flotation for water treatment, Journal of American Water Works Association, 77(5), 42-45. https://doi.org/10.1002/j.1551-8833.1985.tb05537.x
- Zhang, H. and Zhang, X. (2019). Microalgal harvesting using foam flotation: A critical review, Biomass and Bioenergy, 120, 176-188. https://doi.org/10.1016/j.biombioe.2018.11.018