Fig. 1. South Han River Weirs (Gangcheon, Yeoju, Ipo) and monitoring stations.
Fig. 2. Ipo water-quality constituents variation.
Fig. 3. Gangcheon water-quality constituents variation.
Fig. 4. Monitoring data and theoretical Cumulative Distribution Function of COD at Ipo.
Fig. 5. Monitoring data and theoretical Cumulative Distribution Function of COD at Gangcheon.
Fig. 6. Distribution of water-quality constituents before and after Ipo-Weir construction.
Fig. 7. COD probability distribution at Ipo.
Fig. 8. Risk analysis of COD at Ipo.
Table 1. Critical value of
Table 2. Maximum difference (Dmax) of water-quality constituents
Table 3. Rejection and acceptance of probability distribution
Table 4. Mean and standard deviation(s.d.) of the water-quality constituents at Ipo
Table 5. COD value of cumulative distribution function at Ipo
Table 6. Mean and standard deviation of the water-quality constituents at Gangcheon
Table 7. COD value of cumulative distribution function at Gangcheon
Table 8. Null hypothesis test with significance level α=0.05
Table 10. Risk of BOD, TP and Chl-a water-quality grade violation at Ipo
Table 11. Risk of COD water-quality grade violation at Gangcheon
Table 12. Risk of BOD, TP and Chl-a water-quality grade violation at Gangcheon
Table 9. Risk of COD water-quality grade violation at Ipo
References
- Ang, A. H. S. and Tang, W. H. (2007). Probability concepts in engineering : emphasis on applications to civil and environmental engineering, 2nd ed., John Wiley & Sons, New York, 293-296.
- Chang, K. Y., Hong, K. O., and Pak, S. I. (2007). Bootstrap simulation for quantification of uncertainty in risk assessment, Journal of Veterinary Science, 47(2), 259-263.
- Chapra, S. C. (1997). Surface water-quality modeling, McGraw-Hill, New York, 317-341.
- Di Toro, D. M. (1984). Probability model of stream quality due to runoff, Journal of Environmental Engineering, ASCE, 110(3), 607-628. https://doi.org/10.1061/(ASCE)0733-9372(1984)110:3(607)
- Efron, B. (1979). Bootstrap method: Another look at the jackknife, The annuals of statistics, Institute of Mathematical Statistics, 7(1), 1-26.
- Franceschini, S. and Tsai, C. W. (2008). Incorporating reliability into the definition of the margin of safety in total maximum daily load calculation, Journal of Water Resources Planning and Management, ASCE, 134(1), 34-44. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:1(34)
- Han, K. Y., Kim, S. H., and Bae, D. H. (2001). Stochastic water quality analysis using reliability method, Journal of the American Water Resources Association, 37(3), 695-708. https://doi.org/10.1111/j.1752-1688.2001.tb05504.x
- Jhun, M. (1990). A computer intensive method for modern statistical data analysis I; bootstrap method and its applications, Journal of the Korean Statistical Society, 3(1), 121-141. [Korean Literature]
- Kim, K. S. (2010). Analysis of BOD mean concentration and confidence interval using bootstrap technique, Journal of Korean Society on Water Environment, 26(2), 297-302. [Korean Literature]
- Kim, K. S. and Ahn, T. (2010). Characteristics of probability distribution of BOD concentration in Anseong stream watershed, Journal of Korean Society on Water Environment, 25(3), 425-431. [Korean Literature]
- Kim, K. S., Kim, B., and Kim, J. H. (2002). Robust measures of location in water-quality data, Water Engineering Research, 3(3), 195-202.
- Li, K. S. (1992). Point-estimate method for calculating statistical moments, Journal of Engineering Mechanics, ASCE, 118(7), 1506-1511. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:7(1506)
- Manly, B. F. J. (2006). Randomization, bootstrap and monte carlo methods in biology, Chapman & Hall/CRC, Florida.
- Melching, C. S. and Yoon, C. G. (1996). Key sources of uncertainty in QUAL2E model of Passaic river, Journal of Water Resources Planning and Management, ASCE, 122(2), 105-113. https://doi.org/10.1061/(ASCE)0733-9496(1996)122:2(105)
- Ministry of Environment (ME). (2018). Water Environment Information System (WEIS), http://water.nier.go.kr (accessed Aug. 2018).
- Novotny, V. (2004). Simplified databased total maximum daily loads, or the world is log-normal, Journal of Environmental Engineering, 130(6), 674-683. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:6(674)
- Reckhow, K. H., Clements, J. T., and Dodd, R. C. (1990). Statistical evaluation of mechanistic water-quality models, Journal of Environmental Engineering, ASCE, 116(2), 250-268. https://doi.org/10.1061/(ASCE)0733-9372(1990)116:2(250)
- Schwarz, G. E., Hoos, A. B., Alexander, R. B., and Smith, R. A. (2006). The SPARROW surface water-quality model: theory, application and user documentation, U.S. Geological Survey, Reston, Virginia.
- Tsai, C. W. and Franceschini, S. (2005). Evaluation of probabilistic point estimate methods in uncertainty analysis for environmental engineering application, Journal of Environmental Engineering, ASCE, 131(3), 387-395. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:3(387)
- Tung, Y. K. and Hathhorn, W. E. (1988). Assessment of probability distribution of dissolved oxygen deficit, Journal of Environmental Engineering, ASCE, 114(6), 1421-1435. https://doi.org/10.1061/(ASCE)0733-9372(1988)114:6(1421)