과제정보
연구 과제 주관 기관 : UK India Education and Research Initiative (UKIERE)
참고문헌
- Aerodyn, V. and Murray, R. (2017), Predicting Cavitation on Marine and Hydrokinetic Turbine Predicting Cavitation on Marine and Hydrokinetic Turbine Blades with AeroDyn V15.04.Technical report, NREL/TP-5000-68398, August 2017.
- Ai, K., Avital, E.J., Korakianitis, T., Samad, A., Venkatesan, N., Eng, O., et al. (2016), "Surface wave effect on marine current turbine, modelling and analysis", Proceedings of the 7th International Conference on Mechanical and Aerospace Engineerng, UK.
- Amet, E., Maitre, T., Pellone, C. and Achard, J.L. (2009), "2D numerical simulations of blade-vortex interaction in a darrieus turbine", J. Fluid. Eng. T- ASME, 131, 111103. doi:10.1115/1.4000258.
- Badhurshah, R. and Samad, A. (2015), "Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion", Renew. Energ., 74, 749-760. doi:10.1016/j.renene.2014.09.001.
- Bahaj, A.S., Molland, A.F., Chaplin, J.R. and Batten, W.M.J. (2007), "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank", Renew. Energ., 32, 407-426. doi:10.1016/j.renene.2006.01.012.
- Bahaj, A.S. and Myers, L.E. (2003), "Fundamentals applicable to the utilisation of marine current turbines for energy production", Renew. Energ., 28, 2205-2211. doi:10.1016/S0960-1481(03)00103-4.
- Bai, X., Avital, E.J., Munjiza, A. and Williams, J.J.R. (2014), "Numerical simulation of a marine current turbine in free surface flow", Renew. Energ., 63, 715-723. doi:10.1016/j.renene.2013.09.042.
- Bal, S., Atlar, M. and Usar, D. (2015), "Performance prediction of horizontal axis marine current turbines", Ocean Syst. Eng., 5(2), 125-138. doi:10.12989/ose.2015.5.2.125.
- Barber, R.B. (2017), Adaptive Pitch Composite Blades for Axial-Flow Marine Hydrokinetic Turbines.
- Batten, W.M.J., Bahaj, A.S., Molland, A.F. and Chaplin, J.R. (2007), "Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines", Ocean Eng., 34, 1013-1020. doi:10.1016/j.oceaneng.2006.04.008.
- Batten, W.M.J., Harrison, M.E. and Bahaj, A.S. (2013), "Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines", Philos. Trans. A. Math. Phys. Eng. Sci., 371, 20120293. doi:10.1098/rsta.2012.0293.
- Blackmore, T., Myers, L.E. and Bahaj, A.S. (2016), "Effects of turbulence on tidal turbines: Implications to performance, blade loads, and condition monitoring", Int. J. Mar. Energy, 14, 1-26. doi:10.1016/j.ijome.2016.04.017.
- Chini, R., Ordonez, M. and Bachmayer, R. (2011), "Blades optimization for an ocean current horizontal axis turbine using response surface methodology", Ocean. 2011 IEEE - Spain. doi:10.1109/Oceans-Spain.2011.6003646.
- Coiro, D.P., Daniele, E. and Della Vecchia, P. (2016), "Diffuser shape optimization for GEM, a tethered system based on two horizontal axis hydro turbines", Int. J. Mar. Energy, 13, 169-179. doi:10.1016/j.ijome.2015.08.002.
- Delafin, P., Nishino, T., Wang, L. and Kolios, A. (2016), "Effect of the number of blades and solidity on the performance of a vertical axis wind turbine", J. Phys. Conf. Ser., 753, 022033. doi:10.1088/1742-6596/753/2/022033.
- Ezhilsabareesh, K., Rhee, S.H. and Samad, A. (2018), "Shape optimization of a bidirectional impulse turbine via surrogate models", Eng. Appl. Comput. Fluid Mech., 12, 1-12. doi:10.1080/19942060.2017.1330709.
- Goel, T., Haftka, R.T., Shyy, W. and Queipo, N.V. (2007), "Ensemble of surrogates", 199-216. doi:10.1007/s00158-006-0051-9.
- Gong, X., Liao, D., Chen, T., Zhou, J. and Yin, Y. (2016), "Optimization of steel casting feeding system based on BP neural network and genetic algorithm", China Foundry, 13(3), 182-190. doi:10.1007/s41230-016-6008-8.
- Goundar, J.N., Ahmed, M.R. and Lee, Y.H. (2012), "Numerical and experimental studies on hydrofoils for marine current turbines", Renew. Energ., 42, 173-179. doi:10.1016/j.renene.2011.07.048.
- Guo, Q., Zhou, L. and Wang, Z. (2015), "Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine", Renew. Energ., 75, 640-648. doi:10.1016/j.renene.2014.10.047.
- Hansen, M.O. (2015), "Aerodynamics of wind turbines", Routledge Taylor Fr. Gr., 1-189. doi:10.1002/0470846127.
- Huang, B. and Kanemoto, T. (2015), "Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine", Renew. Energ., 81, 837-844. doi:10.1016/j.renene.2015.04.008.
- Karthikeyan, T., Avital, E.J., Venkatesan, N. and Samad, A. (2017), "Design and analysis of a marine current turbine", Proceedings of the ASME 2017 Gas Turbine India Conference, GTINDIA 2017 doi:10.1115/GTINDIA2017-4912.
- Kinnas, S.A., Xu, W., Yu, Y.H. and He, L. (2012), "Computational methods for the design and prediction of performance of tidal turbines", J. Offshore Mech. Arct. Eng., 134, 011101. doi:10.1115/1.4003390.
- Kolekar, N. and Banerjee, A. (2013), "A coupled hydro-structural design optimization for hydrokinetic turbines", J. Renew. Sust. Energ., 5. doi:10.1063/1.4826882.
- Koo, G.W., Lee, S.M. and Kim, K.Y. (2014), "Shape optimization of inlet part of a printed circuit heat exchanger using surrogate modeling", Appl. Therm. Eng., 72, 90-96. doi:10.1016/j.applthermaleng.2013.12.009.
- Lee, H., Jo, Y., Lee, D.J. and Choi, S. (2016), "Surrogate model based design optimization of multiple wing sails considering flow interaction effect", Ocean Eng., 121, 422-436. doi:10.1016/j.oceaneng.2016.05.051.
- Leroux, T., Osbourne, N. and Groulx, D. (2019), "Numerical study into horizontal tidal turbine wake velocity de fi cit : Quasi- steady state and transient approaches", Ocean Eng., 181, 240-251. doi:10.1016/j.oceaneng.2019.04.019.
- Liu, J., Lin, H., Purimitla, S.R. and Das E.T, M. (2017), "The effects of blade twist and nacelle shape on the performance of horizontal axis tidal current turbines", Appl. Ocean Res., 64, 58-69. doi:10.1016/j.apor.2017.02.003.
- Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32, 1598-1605. doi:10.2514/3.12149.
- Moriarty, P.J. and Hansen, A.C. (2005), "AeroDyn theory manual", Renew. Energ., 15, 500-36313. doi:10.1146/annurev.fl.15.010183.001255.
- Morris, C.E., O'Doherty, D.M., Mason-Jones, A. and O'Doherty, T. (2016), "Evaluation of the swirl characteristics of a tidal stream turbine wake", Int. J. Mar. Energy, 14, 198-214. doi:10.1016/j.ijome.2015.08.001.
- Myers, L. and Bahaj, A.S. (2007), "Wake studies of a 1/30th scale horizontal axis marine current turbine", Ocean Eng., 34, 758-762. doi:10.1016/j.oceaneng.2006.04.013.
- Nishino, T. and Willden, R.H.J. (2012), "Effects of 3-D channel blockage and turbulent wake mixing on the limit of power extraction by tidal turbines", Int. J. Heat Fluid Fl., 37, 123-135. doi:10.1016/j.ijheatfluidflow.2012.05.002.
- Priegue, L. and Stoesser, T. (2016), "The influence of blade roughness on the performance of a vertical axis tidal turbine", Submitted to Int. J. Mar. Energy, 17, 136-146. doi:10.1016/j.ijome.2017.01.009.
- Rahimian, M., Walker, J. and Penesis, I. (2018), "Performance of a horizontal axis marine current turbine- A comprehensive evaluation using experimental, numerical, and theoretical approaches", Energy, 148, 965-976. doi:10.1016/j.energy.2018.02.007.
- Ren, Y., Liu, B., Zhang, T. and Fang, Q. (2017), "Design and hydrodynamic analysis of horizontal axis tidal stream turbines with winglets", Ocean Eng., 144, 374-383. doi:10.1016/j.oceaneng.2017.09.038.
- Rosli, R., Norman, R. and Atlar, M. (2016), "Experimental investigations of the Hydro-Spinna turbine performance", Renew. Energy, 99, 1227-1234. doi:10.1016/j.renene.2016.08.034.
- Samad, A., Kim, K.Y., Goel, T., Haftka, R.T. and Shyy, W. (2008), "Multiple surrogate modeling for axial compressor blade shape optimization", J. Propuls. Power, 24, 301-310. doi:10.2514/1.28999.
- Schleicher, W.C., Riglin, J.D. and Oztekin, A. (2015), "Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design", Renew. Energy, 76, 234-241. doi:10.1016/j.renene.2014.11.032.
- Schluntz, J. and Willden, R.H.J. (2015), "The effect of blockage on tidal turbine rotor design and performance", Renew. Energ., 81, 432-441. doi:10.1016/j.renene.2015.02.050.
- Subhra Mukherji, S., Kolekar, N., Banerjee, A. and Mishra, R. (2011), "Numerical investigation and evaluation of optimum hydrodynamic performance of a horizontal axis hydrokinetic turbine", Renew. Sust. Energ., 3. doi:10.1063/1.3662100.
- Tahani, M., Babayan, N., Astaraei, F.R. and Moghadam, A. (2015), "Multi objective optimization of horizontal axis tidal current turbines, using Meta heuristics algorithms", Energy Convers. Manage, 103, 487-498. doi:10.1016/j.enconman.2015.06.086.
- Tian, W., Song, B., VanZwieten, J.H., Pyakurel, P. and Li, Y. (2016a), "Numerical simulations of a horizontal axis water turbine designed for underwater mooring platforms", Int. J. Nav. Archit. Ocean Eng., 8, 73-82. doi:10.1016/j.ijnaoe.2015.10.003.
- Tian, W., VanZwieten, J.H., Pyakurel, P. and Li, Y. (2016b), "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine", Energy, 111, 104-116. doi:10.1016/j.energy.2016.05.012.
- Turnock, S.R., Phillips, A.B., Banks, J. and Nicholls-Lee, R. (2011), "Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines", Ocean Eng., 38, 1300-1307. doi:10.1016/j.oceaneng.2011.05.018.
- Vennell, R. (2013), "Exceeding the Betz limit with tidal turbines", Renew. Energ., 55, 277-285. doi:10.1016/j.renene.2012.12.016.
- Wei, X., Huang, B., Liu, P., Kanemoto, T. and Wang, L. (2015), "Experimental investigation into the effects of blade pitch angle and axial distance on the performance of a counter-rotating tidal turbine", Ocean Eng., 110, 78-88. doi:10.1016/j.oceaneng.2015.10.010.
- Zhu, B., Sun, X., Wang, Y. and Huang, D. (2017), "Performance characteristics of a horizontal axis turbine with fusion winglet", Energy, 120, 431-440. doi:10.1016/j.energy.2016.11.094.
- Zhu, G.J., Guo, P.C., Luo, X.Q. and Feng, J.J. (2012), "The multi-objective optimization of the horizontal-axis marine current turbine based on NSGA-II algorithm", Proceedings of the IOP Conf. Ser. Earth Environ. Sci., 15, 42039. doi:10.1088/1755-1315/15/4/042039.
피인용 문헌
- Surrogate-Based Optimization of Horizontal Axis Hydrokinetic Turbine Rotor Blades vol.14, pp.13, 2019, https://doi.org/10.3390/en14134045
- Multi-objective structural optimization of a wind turbine blade using NSGA-II algorithm and FSI vol.93, pp.6, 2019, https://doi.org/10.1108/aeat-02-2021-0055