참고문헌
- Abdelaziz, H.H., et al. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/SCS.2017.25.6.693
- Ahouel, M., et al. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
- Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015b), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
- Bakhadda, B., et al. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324 . https://doi.org/10.12989/WAS.2018.27.5.311
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
- Bellifa, H., et al. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695
- Bousahla, A.A., et al. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
- Bourada, F., et al. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025
- Chikh, A., et al. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
- Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
- El-Haina, F., et al. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007
- Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2018), "Dynamic analysis of graded small-scale shells with porosity distributions under transverse dynamic loads", Eur. Phys. J. Plus, 133(9), 348. https://doi.org/10.1140/epjp/i2018-12152-5
- Fourn, H., et al. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/SCS.2018.27.1.109
- Han, S.C., Park, W.T. and Jung, W.Y. (2015), "A four-variable refined plate theory for dynamic stability analysis of S-FGM plates based on physical neutral surface", Compos. Struct., 131, 1081-1089. https://doi.org/10.1016/j.compstruct.2015.06.025
- Kaci, A., et al. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/SEM.2018.65.5.621
- Khetir, H., et al. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
- Menasria, A., et al. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
- Mirjavadi, S.S., Afshari, B.M., Barati, M R. and Hamouda, A.M.S. (2018), "Strain gradient based dynamic response analysis of heterogeneous cylindrical microshells with porosities under a moving load", Mater. Res. Express, 6(3), 035029. https://doi.org/10.1088/2053-1591/aaf5a2
- Mirjavadi, S.S., Afshari, B.M., Barati, M.R. and Hamouda, A.M.S. (2019a), "Nonlinear free and forced vibrations of graphene nanoplatelet reinforced microbeams with geometrical imperfection", Microsyst. Technol., 1-14.
- Mirjavadi, S.S., Afshari, B.M., Barati, M.R. and Hamouda, A.M.S. (2019b), "Transient response of porous FG nanoplates subjected to various pulse loads based on nonlocal stress-strain gradient theory", Eur. J. Mech. -A/Solids, 74, 210-220. https://doi.org/10.1016/j.euromechsol.2018.11.004
- Mokhtar, Y., et al. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/SSS.2018.21.4.397
- Mouffoki, A., et al. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
- Rezaei, A.S. and Saidi, A.R. (2016), "Application of carrera unified formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates", Compos. Part B: Eng., 91, 361-370. https://doi.org/10.1016/j.compositesb.2015.12.050
- Semmah, A., et al. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Yazid, M., et al. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/SSS.2018.21.1.015
- Youcef, D.O., et al. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/SSS.2018.21.1.065
- Zemri, A., et al. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
- Zenkour, A.M. (2016), "Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium", Physica E: Low-dimensional Systems and Nanostructures, 79, 87-97. https://doi.org/10.1016/j.physe.2015.12.003
피인용 문헌
- Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
- Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.147
- Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.397
- Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams vol.5, pp.2, 2019, https://doi.org/10.12989/acd.2020.5.2.177
- Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.283
- Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2019, https://doi.org/10.12989/sem.2020.76.3.413
- Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.001
- Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.243
- Finite element simulation for investigation on thermal post-buckling of geometrically imperfect GOP-reinforced beam vol.12, pp.2, 2021, https://doi.org/10.12989/acc.2021.12.2.135
- Nonlinear vibration behavior of hybrid multi-scale cylindrical panels via semi numerical method vol.28, pp.3, 2021, https://doi.org/10.12989/cac.2021.28.3.233
- Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.893