DOI QR코드

DOI QR Code

Clinical application of serum anti-Müllerian hormone in women

  • Oh, So Ra (Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine) ;
  • Choe, Sun Yi (Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine) ;
  • Cho, Yeon Jean (Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine)
  • Received : 2019.03.29
  • Accepted : 2019.05.22
  • Published : 2019.06.30

Abstract

Anti-$M{\ddot{u}}llerian$ hormone (AMH), a peptide growth factor of the transforming growth $factor-{\beta}$ family, is a reliable marker of ovarian reserve. Regarding assisted reproductive technology, AMH has been efficiently used as a marker to predict ovarian response to stimulation. The clinical use of AMH has recently been extended and emphasized. The uses of AMH as a predictive marker of menopause onset, diagnostic tool for polycystic ovary syndrome, and assessment of ovarian function before and after gynecologic surgeries or gonadotoxic agents such as chemotherapy have been investigated. Serum AMH levels can also be affected by environmental and genetic factors; thus, the effects of factors that may alter AMH test results should be considered. This review summarizes the findings of recent studies focusing on the clinical application of AMH and factors that influence the AMH level and opinions on the use of the AMH level to assess the probability of conception before reproductive life planning as a "fertility test."

Keywords

References

  1. Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NM, Cheung A, et al. Isolation of the bovine and human genes for Mullerian inhibiting substance and expression of the human gene in animal cells. Cell 1986;45:685-98. https://doi.org/10.1016/0092-8674(86)90783-X
  2. Lee MM, Donahoe PK. Mullerian inhibiting substance: a gonadal hormone with multiple functions. Endocr Rev 1993;14:152-64. https://doi.org/10.1210/er.14.2.152
  3. Josso N, Cate RL, Picard JY, Vigier B, di Clemente N, Wilson C, et al. Anti-mullerian hormone: the Jost factor. Recent Prog Horm Res 1993;48:1-59.
  4. Durlinger AL, Gruijters MJ, Kramer P, Karels B, Ingraham HA, Nachtigal MW, et al. Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 2002;143:1076-84. https://doi.org/10.1210/endo.143.3.8691
  5. Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, et al. Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod 2004;10:77-83. https://doi.org/10.1093/molehr/gah015
  6. Durlinger AL, Visser JA, Themmen AP. Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction 2002;124:601-9. https://doi.org/10.1530/rep.0.1240601
  7. Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, et al. Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology 1999;140:5789-96. https://doi.org/10.1210/endo.140.12.7204
  8. Nilsson E, Rogers N, Skinner MK. Actions of anti-Mullerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition. Reproduction 2007;134:209-21. https://doi.org/10.1530/REP-07-0119
  9. Andersen CY, Schmidt KT, Kristensen SG, Rosendahl M, Byskov AG, Ernst E. Concentrations of AMH and inhibin-B in relation to follicular diameter in normal human small antral follicles. Hum Reprod 2010;25:1282-7. https://doi.org/10.1093/humrep/deq019
  10. Baarends WM, Uilenbroek JT, Kramer P, Hoogerbrugge JW, van Leeuwen EC, Themmen AP, et al. Anti-mullerian hormone and anti-mullerian hormone type II receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth. Endocrinology 1995;136:4951-62. https://doi.org/10.1210/endo.136.11.7588229
  11. Andersen CY, Byskov AG. Estradiol and regulation of anti-Mullerian hormone, inhibin-A, and inhibin-B secretion: analysis of small antral and preovulatory human follicles' fluid. J Clin Endocrinol Metab 2006;91:4064-9. https://doi.org/10.1210/jc.2006-1066
  12. Andersen CY, Lossl K. Increased intrafollicular androgen levels affect human granulosa cell secretion of anti-Mullerian hormone and inhibin-B. Fertil Steril 2008;89:1760-5. https://doi.org/10.1016/j.fertnstert.2007.05.003
  13. Grossman MP, Nakajima ST, Fallat ME, Siow Y. Mullerian-inhibiting substance inhibits cytochrome P450 aromatase activity in human granulosa lutein cell culture. Fertil Steril 2008;89(5 Suppl):1364-70. https://doi.org/10.1016/j.fertnstert.2007.03.066
  14. Grynberg M, Pierre A, Rey R, Leclerc A, Arouche N, Hesters L, et al. Differential regulation of ovarian anti-mullerian hormone (AMH) by estradiol through ${\alpha}$- and ${\beta}$-estrogen receptors. J Clin Endocrinol Metab 2012;97:E1649-57. https://doi.org/10.1210/jc.2011-3133
  15. Lee MM, Donahoe PK, Hasegawa T, Silverman B, Crist GB, Best S, et al. Mullerian inhibiting substance in humans: normal levels from infancy to adulthood. J Clin Endocrinol Metab 1996;81:571-6. https://doi.org/10.1210/jcem.81.2.8636269
  16. Rajpert-De Meyts E, Jorgensen N, Graem N, Muller J, Cate RL, Skakkebaek NE. Expression of anti-Mullerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J Clin Endocrinol Metab 1999;84:3836-44. https://doi.org/10.1210/jcem.84.10.6047
  17. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod 2008;23:699-708. https://doi.org/10.1093/humrep/dem408
  18. de Vet A, Laven JS, de Jong FH, Themmen AP, Fauser BC. Antimullerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril 2002;77:357-62. https://doi.org/10.1016/S0015-0282(01)02993-4
  19. Tsepelidis S, Devreker F, Demeestere I, Flahaut A, Gervy Ch, Englert Y. Stable serum levels of anti-Mullerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women. Hum Reprod 2007;22:1837-40. https://doi.org/10.1093/humrep/dem101
  20. Hehenkamp WJ, Looman CW, Themmen AP, de Jong FH, Te Velde ER, Broekmans FJ. Anti-Mullerian hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation. J Clin Endocrinol Metab 2006;91:4057-63. https://doi.org/10.1210/jc.2006-0331
  21. van Disseldorp J, Lambalk CB, Kwee J, Looman CW, Eijkemans MJ, Fauser BC, et al. Comparison of inter- and intra-cycle variability of anti-Mullerian hormone and antral follicle counts. Hum Reprod 2010;25:221-7. https://doi.org/10.1093/humrep/dep366
  22. Sherman BM, West JH, Korenman SG. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. J Clin Endocrinol Metab 1976;42:629-36. https://doi.org/10.1210/jcem-42-4-629
  23. Fauser BC, Van Heusden AM. Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocr Rev 1997;18:71-106. https://doi.org/10.1210/er.18.1.71
  24. Welt CK, McNicholl DJ, Taylor AE, Hall JE. Female reproductive aging is marked by decreased secretion of dimeric inhibin. J Clin Endocrinol Metab 1999;84:105-11. https://doi.org/10.1210/jcem.84.1.5381
  25. Klein NA, Illingworth PJ, Groome NP, McNeilly AS, Battaglia DE, Soules MR. Decreased inhibin B secretion is associated with the monotropic FSH rise in older, ovulatory women: a study of serum and follicular fluid levels of dimeric inhibin A and B in spontaneous menstrual cycles. J Clin Endocrinol Metab 1996;81:2742-5. https://doi.org/10.1210/jcem.81.7.8675606
  26. van Rooij IA, Broekmans FJ, Scheffer GJ, Looman CW, Habbema JD, de Jong FH, et al. Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: a longitudinal study. Fertil Steril 2005;83:979-87. https://doi.org/10.1016/j.fertnstert.2004.11.029
  27. Lee JY, Jee BC, Lee JR, Kim CH, Park T, Yeon BR, et al. Age-related distributions of anti-Mullerian hormone level and anti-Mullerian hormone models. Acta Obstet Gynecol Scand 2012;91:970-5. https://doi.org/10.1111/j.1600-0412.2012.01448.x
  28. Lie Fong S, Visser JA, Welt CK, de Rijke YB, Eijkemans MJ, Broekmans FJ, et al. Serum anti-mullerian hormone levels in healthy females: a nomogram ranging from infancy to adulthood. J Clin Endocrinol Metab 2012;97:4650-5. https://doi.org/10.1210/jc.2012-1440
  29. La Marca A, Sighinolfi G, Giulini S, Traglia M, Argento C, Sala C, et al. Normal serum concentrations of anti-Mullerian hormone in women with regular menstrual cycles. Reprod Biomed Online 2010;21:463-9. https://doi.org/10.1016/j.rbmo.2010.05.009
  30. Delvigne A, Rozenberg S. Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): a review. Hum Reprod Update 2002;8:559-77. https://doi.org/10.1093/humupd/8.6.559
  31. Bancsi LF, Huijs AM, den Ouden CT, Broekmans FJ, Looman CW, Blankenstein MA, et al. Basal follicle-stimulating hormone levels are of limited value in predicting ongoing pregnancy rates after in vitro fertilization. Fertil Steril 2000;73:552-7. https://doi.org/10.1016/S0015-0282(99)00552-X
  32. Baart EB, Martini E, van den Berg I, Macklon NS, Galjaard RJ, Fauser BC, et al. Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum Reprod 2006;21:223-33. https://doi.org/10.1093/humrep/dei291
  33. Luna M, Grunfeld L, Mukherjee T, Sandler B, Copperman AB. Moderately elevated levels of basal follicle-stimulating hormone in young patients predict low ovarian response, but should not be used to disqualify patients from attempting in vitro fertilization. Fertil Steril 2007;87:782-7. https://doi.org/10.1016/j.fertnstert.2006.08.094
  34. Heijnen EM, Eijkemans MJ, De Klerk C, Polinder S, Beckers NG, Klinkert ER, et al. A mild treatment strategy for in-vitro fertilisation: a randomised non-inferiority trial. Lancet 2007;369:743-9. https://doi.org/10.1016/S0140-6736(07)60360-2
  35. Eldar-Geva T, Ben-Chetrit A, Spitz IM, Rabinowitz R, Markowitz E, Mimoni T, et al. Dynamic assays of inhibin B, anti-Mullerian hormone and estradiol following FSH stimulation and ovarian ultrasonography as predictors of IVF outcome. Hum Reprod 2005;20:3178-83. https://doi.org/10.1093/humrep/dei203
  36. Verberg MF, Eijkemans MJ, Macklon NS, Heijnen EM, Baart EB, Hohmann FP, et al. The clinical significance of the retrieval of a low number of oocytes following mild ovarian stimulation for IVF: a meta-analysis. Hum Reprod Update 2009;15:5-12.
  37. van der Gaast MH, Eijkemans MJ, van der Net JB, de Boer EJ, Burger CW, van Leeuwen FE, et al. Optimum number of oocytes for a successful first IVF treatment cycle. Reprod Biomed Online 2006;13:476-80. https://doi.org/10.1016/S1472-6483(10)60633-5
  38. Erdem M, Erdem A, Gursoy R, Biberoglu K. Comparison of basal and clomiphene citrate induced FSH and inhibin B, ovarian volume and antral follicle counts as ovarian reserve tests and predictors of poor ovarian response in IVF. J Assist Reprod Genet 2004;21:37-45. https://doi.org/10.1023/B:JARG.0000025936.73125.b4
  39. Broer SL, Dolleman M, van Disseldorp J, Broeze KA, Opmeer BC, Bossuyt PM, et al. Prediction of an excessive response in in vitro fertilization from patient characteristics and ovarian reserve tests and comparison in subgroups: an individual patient data meta-analysis. Fertil Steril 2013;100:420-9. https://doi.org/10.1016/j.fertnstert.2013.04.024
  40. Kwee J, Schats R, McDonnell J, Themmen A, de Jong F, Lambalk C. Evaluation of anti-Mullerian hormone as a test for the prediction of ovarian reserve. Fertil Steril 2008;90:737-43. https://doi.org/10.1016/j.fertnstert.2007.07.1293
  41. Nelson SM, Yates RW, Fleming R. Serum anti-Mullerian hormone and FSH: prediction of live birth and extremes of response in stimulated cycles--implications for individualization of therapy. Hum Reprod 2007;22:2414-21. https://doi.org/10.1093/humrep/dem204
  42. Lee TH, Liu CH, Huang CC, Wu YL, Shih YT, Ho HN, et al. Serum anti-Mullerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum Reprod 2008;23:160-7. https://doi.org/10.1093/humrep/dem254
  43. Nardo LG, Gelbaya TA, Wilkinson H, Roberts SA, Yates A, Pemberton P, et al. Circulating basal anti-Mullerian hormone levels as predictor of ovarian response in women undergoing ovarian stimulation for in vitro fertilization. Fertil Steril 2009;92:1586-93. https://doi.org/10.1016/j.fertnstert.2008.08.127
  44. Hendriks DJ, Mol BW, Bancsi LF, Te Velde ER, Broekmans FJ. Antral follicle count in the prediction of poor ovarian response and pregnancy after in vitro fertilization: a meta-analysis and comparison with basal follicle-stimulating hormone level. Fertil Steril 2005;83:291-301. https://doi.org/10.1016/j.fertnstert.2004.10.011
  45. Lee JE, Lee JR, Jee BC, Suh CS, Kim KC, Lee WD, et al. Clinical application of anti-Mullerian hormone as a predictor of controlled ovarian hyperstimulation outcome. Clin Exp Reprod Med 2012;39:176-81. https://doi.org/10.5653/cerm.2012.39.4.176
  46. Moon KY, Kim H, Lee JY, Lee JR, Jee BC, Suh CS, et al. Nomogram to predict the number of oocytes retrieved in controlled ovarian stimulation. Clin Exp Reprod Med 2016;43:112-8. https://doi.org/10.5653/cerm.2016.43.2.112
  47. La Marca A, Sighinolfi G, Radi D, Argento C, Baraldi E, Artenisio AC, et al. Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum Reprod Update 2010;16:113-30. https://doi.org/10.1093/humupd/dmp036
  48. van Rooij IA, Tonkelaar Id, Broekmans FJ, Looman CW, Scheffer GJ, de Jong FH, et al. Anti-mullerian hormone is a promising predictor for the occurrence of the menopausal transition. Menopause 2004;11(6 Pt 1):601-6. https://doi.org/10.1097/01.GME.0000123642.76105.6E
  49. Ficicioglu C, Kutlu T, Baglam E, Bakacak Z. Early follicular antimullerian hormone as an indicator of ovarian reserve. Fertil Steril 2006;85:592-6. https://doi.org/10.1016/j.fertnstert.2005.09.019
  50. van Rooij IA, Broekmans FJ, te Velde ER, Fauser BC, Bancsi LF, de Jong FH, et al. Serum anti-Mullerian hormone levels: a novel measure of ovarian reserve. Hum Reprod 2002;17:3065-71. https://doi.org/10.1093/humrep/17.12.3065
  51. Broer SL, Eijkemans MJ, Scheffer GJ, van Rooij IA, de Vet A, Themmen AP, et al. Anti-mullerian hormone predicts menopause: a long-term follow-up study in normoovulatory women. J Clin Endocrinol Metab 2011;96:2532-9. https://doi.org/10.1210/jc.2010-2776
  52. Bertone-Johnson ER, Manson JE, Purdue-Smithe AC, Steiner AZ, Eliassen AH, Hankinson SE, et al. Anti-Mullerian hormone levels and incidence of early natural menopause in a prospective study. Hum Reprod 2018;33:1175-82. https://doi.org/10.1093/humrep/dey077
  53. Depmann M, Eijkemans MJ, Broer SL, Tehrani FR, Solaymani-Dodaran M, Azizi F, et al. Does AMH relate to timing of menopause? Results of an individual patient data meta- analysis. J Clin Endocrinol Metab 2018;103:3593-600. https://doi.org/10.1210/jc.2018-00724
  54. Schuh-Huerta SM, Johnson NA, Rosen MP, Sternfeld B, Cedars MI, Reijo Pera RA. Genetic variants and environmental factors associated with hormonal markers of ovarian reserve in Caucasian and African American women. Hum Reprod 2012;27:594-608. https://doi.org/10.1093/humrep/der391
  55. Bhide P, Gudi A, Shah A, Homburg R. Serum anti-Mullerian hormone levels across different ethnic groups: a cross-sectional study. BJOG 2015;122:1625-9. https://doi.org/10.1111/1471-0528.13103
  56. Tal R, Seifer DB. Potential mechanisms for racial and ethnic differences in antimullerian hormone and ovarian reserve. Int J Endocrinol 2013;2013:818912. https://doi.org/10.1155/2013/818912
  57. Gleicher N, Weghofer A, Oktay K, Barad DH. Correlation of triple repeats on the FMR1 (fragile X) gene to ovarian reserve: a new infertility test? Acta Obstet Gynecol Scand 2009;88:1024-30. https://doi.org/10.1080/00016340903171058
  58. Laven JS, Mulders AG, Visser JA, Themmen AP, De Jong FH, Fauser BC. Anti-Mullerian hormone serum concentrations in normoovulatory and anovulatory women of reproductive age. J Clin Endocrinol Metab 2004;89:318-23. https://doi.org/10.1210/jc.2003-030932
  59. Pigny P, Merlen E, Robert Y, Cortet-Rudelli C, Decanter C, Jonard S, et al. Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J Clin Endocrinol Metab 2003;88:5957-62. https://doi.org/10.1210/jc.2003-030727
  60. Pellatt L, Hanna L, Brincat M, Galea R, Brain H, Whitehead S, et al. Granulosa cell production of anti-Mullerian hormone is increased in polycystic ovaries. J Clin Endocrinol Metab 2007;92:240-5. https://doi.org/10.1210/jc.2006-1582
  61. Dewailly D, Catteau-Jonard S, Reyss AC, Maunoury-Lefebvre C, Poncelet E, Pigny P. The excess in 2-5 mm follicles seen at ovarian ultrasonography is tightly associated to the follicular arrest of the polycystic ovary syndrome. Hum Reprod 2007;22:1562-6. https://doi.org/10.1093/humrep/dem060
  62. Tal R, Seifer DB, Khanimov M, Malter HE, Grazi RV, Leader B. Characterization of women with elevated antimullerian hormone levels (AMH): correlation of AMH with polycystic ovarian syndrome phenotypes and assisted reproductive technology outcomes. Am J Obstet Gynecol 2014;211:59.e1-8. https://doi.org/10.1016/j.ajog.2014.02.026
  63. Pierre A, Peigne M, Grynberg M, Arouche N, Taieb J, Hesters L, et al. Loss of LH-induced down-regulation of anti-Mullerian hormone receptor expression may contribute to anovulation in women with polycystic ovary syndrome. Hum Reprod 2013;28:762-9. https://doi.org/10.1093/humrep/des460
  64. Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Invest 1998;101:2622-9. https://doi.org/10.1172/JCI2081
  65. Weil S, Vendola K, Zhou J, Bondy CA. Androgen and folliclestimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab 1999;84:2951-6. https://doi.org/10.1210/jcem.84.8.5929
  66. Nardo LG, Yates AP, Roberts SA, Pemberton P, Laing I. The relationships between AMH, androgens, insulin resistance and basal ovarian follicular status in non-obese subfertile women with and without polycystic ovary syndrome. Hum Reprod 2009;24:2917-23. https://doi.org/10.1093/humrep/dep225
  67. Park HT, Cho GJ, Ahn KH, Shin JH, Kim YT, Hur JY, et al. Association of insulin resistance with anti-Mullerian hormone levels in women without polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 2010;72:26-31. https://doi.org/10.1111/j.1365-2265.2009.03614.x
  68. Jadoul P, Kitajima M, Donnez O, Squifflet J, Donnez J. Surgical treatment of ovarian endometriomas: state of the art? Fertil Steril 2012;98:556-63. https://doi.org/10.1016/j.fertnstert.2012.06.023
  69. Hachisuga T, Kawarabayashi T. Histopathological analysis of laparoscopically treated ovarian endometriotic cysts with special reference to loss of follicles. Hum Reprod 2002;17:432-5. https://doi.org/10.1093/humrep/17.2.432
  70. Muzii L, Bellati F, Bianchi A, Palaia I, Manci N, Zullo MA, et al. Laparoscopic stripping of endometriomas: a randomized trial on different surgical techniques. Part II: pathological results. Hum Reprod 2005;20:1987-92. https://doi.org/10.1093/humrep/deh851
  71. Roman H, Tarta O, Pura I, Opris I, Bourdel N, Marpeau L, et al. Direct proportional relationship between endometrioma size and ovarian parenchyma inadvertently removed during cystectomy, and its implication on the management of enlarged endometriomas. Hum Reprod 2010;25:1428-32. https://doi.org/10.1093/humrep/deq069
  72. Busacca M, Vignali M. Endometrioma excision and ovarian reserve: a dangerous relation. J Minim Invasive Gynecol 2009;16:142-8. https://doi.org/10.1016/j.jmig.2008.12.013
  73. Alborzi S, Keramati P, Younesi M, Samsami A, Dadras N. The impact of laparoscopic cystectomy on ovarian reserve in patients with unilateral and bilateral endometriomas. Fertil Steril 2014;101:427-34. https://doi.org/10.1016/j.fertnstert.2013.10.019
  74. Chang HJ, Han SH, Lee JR, Jee BC, Lee BI, Suh CS, et al. Impact of laparoscopic cystectomy on ovarian reserve: serial changes of serum anti-Mullerian hormone levels. Fertil Steril 2010;94:343-9. https://doi.org/10.1016/j.fertnstert.2009.02.022
  75. Goodman LR, Goldberg JM, Flyckt RL, Gupta M, Harwalker J, Falcone T. Effect of surgery on ovarian reserve in women with endometriomas, endometriosis and controls. Am J Obstet Gynecol 2016;215:589.
  76. Uncu G, Kasapoglu I, Ozerkan K, Seyhan A, Oral Yilmaztepe A, Ata B. Prospective assessment of the impact of endometriomas and their removal on ovarian reserve and determinants of the rate of decline in ovarian reserve. Hum Reprod 2013;28:2140-5. https://doi.org/10.1093/humrep/det123
  77. Kwon SK, Kim SH, Yun SC, Kim DY, Chae HD, Kim CH, et al. Decline of serum antimullerian hormone levels after laparoscopic ovarian cystectomy in endometrioma and other benign cysts: a prospective cohort study. Fertil Steril 2014;101:435-41. https://doi.org/10.1016/j.fertnstert.2013.10.043
  78. Anderson RA, Rosendahl M, Kelsey TW, Cameron DA. Pretreatment anti-Mullerian hormone predicts for loss of ovarian function after chemotherapy for early breast cancer. Eur J Cancer 2013;49:3404-11. https://doi.org/10.1016/j.ejca.2013.07.014
  79. Lee DY, Park YH, Lee JE, Choi D. Prediction of ovarian function recovery in young breast cancer patients after protection with gonadotropin-releasing hormone agonist during chemotherapy. Breast Cancer Res Treat 2018;171:649-56. https://doi.org/10.1007/s10549-018-4863-2
  80. Kim HA, Choi J, Park CS, Seong MK, Hong SE, Kim JS, et al. Postchemotherapy serum anti-Mullerian hormone level predicts ovarian function recovery. Endocr Connect 2018;7:949-56. https://doi.org/10.1530/EC-18-0180
  81. van den Berg MH, van Dulmen-den Broeder E, Overbeek A, Twisk JW, Schats R, van Leeuwen FE, et al. Comparison of ovarian function markers in users of hormonal contraceptives during the hormone-free interval and subsequent natural early follicular phases. Hum Reprod 2010;25:1520-7. https://doi.org/10.1093/humrep/deq071
  82. Bentzen JG, Forman JL, Pinborg A, Lidegaard O, Larsen EC, Friis-Hansen L, et al. Ovarian reserve parameters: a comparison between users and non-users of hormonal contraception. Reprod Biomed Online 2012;25:612-9. https://doi.org/10.1016/j.rbmo.2012.09.001
  83. Dewailly D, Andersen CY, Balen A, Broekmans F, Dilaver N, Fanchin R, et al. The physiology and clinical utility of anti-Mullerian hormone in women. Hum Reprod Update 2014;20:370-85. https://doi.org/10.1093/humupd/dmt062
  84. Birch Petersen K, Hvidman HW, Forman JL, Pinborg A, Larsen EC, Macklon KT, et al. Ovarian reserve assessment in users of oral contraception seeking fertility advice on their reproductive lifespan. Hum Reprod 2015;30:2364-75. https://doi.org/10.1093/humrep/dev197
  85. van Heusden AM, Coelingh Bennink HJ, Fauser BC. FSH and ovarian response: spontaneous recovery of pituitary-ovarian activity during the pill-free period vs. exogenous recombinant FSH during high-dose combined oral contraceptives. Clin Endocrinol (Oxf) 2002;56:509-17. https://doi.org/10.1046/j.1365-2265.2002.01518.x
  86. Jungheim ES, Travieso JL, Carson KR, Moley KH. Obesity and reproductive function. Obstet Gynecol Clin North Am 2012;39:479-93. https://doi.org/10.1016/j.ogc.2012.09.002
  87. Freeman EW, Gracia CR, Sammel MD, Lin H, Lim LC, Strauss JF 3rd. Association of anti-mullerian hormone levels with obesity in late reproductive-age women. Fertil Steril 2007;87:101-6. https://doi.org/10.1016/j.fertnstert.2006.05.074
  88. Buyuk E, Seifer DB, Illions E, Grazi RV, Lieman H. Elevated body mass index is associated with lower serum anti-mullerian hormone levels in infertile women with diminished ovarian reserve but not with normal ovarian reserve. Fertil Steril 2011;95:2364-8. https://doi.org/10.1016/j.fertnstert.2011.03.081
  89. Moslehi N, Shab-Bidar S, Ramezani Tehrani F, Mirmiran P, Azizi F. Is ovarian reserve associated with body mass index and obesity in reproductive aged women? A meta-analysis. Menopause 2018;25:1046-55. https://doi.org/10.1097/GME.0000000000001116
  90. Chodosh LA. Expression of BRCA1 and BRCA2 in normal and neoplastic cells. J Mammary Gland Biol Neoplasia 1998;3:389-402. https://doi.org/10.1023/A:1018784031651
  91. Oktay K, Kim JY, Barad D, Babayev SN. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J Clin Oncol 2010;28:240-4. https://doi.org/10.1200/JCO.2009.24.2057
  92. Wang ET, Pisarska MD, Bresee C, Chen YD, Lester J, Afshar Y, et al. BRCA1 germline mutations may be associated with reduced ovarian reserve. Fertil Steril 2014;102:1723-8. https://doi.org/10.1016/j.fertnstert.2014.08.014
  93. Johnson L, Sammel MD, Domchek S, Schanne A, Prewitt M, Gracia C. Antimullerian hormone levels are lower in BRCA2 mutation carriers. Fertil Steril 2017;107:1256-65. https://doi.org/10.1016/j.fertnstert.2017.03.018
  94. Michaelson-Cohen R, Mor P, Srebnik N, Beller U, Levy-Lahad E, Eldar-Geva T. BRCA mutation carriers do not have compromised ovarian reserve. Int J Gynecol Cancer 2014;24:233-7. https://doi.org/10.1097/IGC.0000000000000058
  95. Merhi Z, Doswell A, Krebs K, Cipolla M. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. J Clin Endocrinol Metab 2014;99:E1137-45. https://doi.org/10.1210/jc.2013-4161
  96. Dennis NA, Houghton LA, Jones GT, van Rij AM, Morgan K, McLennan IS. The level of serum anti-Mullerian hormone correlates with vitamin D status in men and women but not in boys. J Clin Endocrinol Metab 2012;97:2450-5. https://doi.org/10.1210/jc.2012-1213
  97. Pearce K, Gleeson K, Tremellen K. Serum anti-Mullerian hormone production is not correlated with seasonal fluctuations of vitamin D status in ovulatory or PCOS women. Hum Reprod 2015;30:2171-7. https://doi.org/10.1093/humrep/dev167
  98. Drakopoulos P, van de Vijver A, Schutyser V, Milatovic S, Anckaert E, Schiettecatte J, et al. The effect of serum vitamin D levels on ovarian reserve markers: a prospective cross-sectional study. Hum Reprod 2017;32:208-14. https://doi.org/10.1093/humrep/dew304
  99. Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K, et al. Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod 2013;19:519-27. https://doi.org/10.1093/molehr/gat024
  100. Dewailly D, Gronier H, Poncelet E, Robin G, Leroy M, Pigny P, et al. Diagnosis of polycystic ovary syndrome (PCOS): revisiting the threshold values of follicle count on ultrasound and of the serum AMH level for the definition of polycystic ovaries. Hum Reprod 2011;26:3123-9. https://doi.org/10.1093/humrep/der297
  101. Victoria M, Labrosse J, Krief F, Cedrin-Durnerin I, Comtet M, Grynberg M. Anti Mullerian hormone: more than a biomarker of female reproductive function. J Gynecol Obstet Hum Reprod 2019;48:19-24. https://doi.org/10.1016/j.jogoh.2018.10.015
  102. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod 2018;33:1602-18. https://doi.org/10.1093/humrep/dey256
  103. Dumont A, Robin G, Catteau-Jonard S, Dewailly D. Role of anti-Mullerian hormone in pathophysiology, diagnosis and treatment of polycystic ovary syndrome: a review. Reprod Biol Endocrinol 2015;13:137. https://doi.org/10.1186/s12958-015-0134-9
  104. Steiner AZ, Pritchard D, Stanczyk FZ, Kesner JS, Meadows JW, Herring AH, et al. Association between biomarkers of ovarian reserve and infertility among older women of reproductive age. JAMA 2017;318:1367-76. https://doi.org/10.1001/jama.2017.14588
  105. Koo HS, Song IO, Cha SH, Park CW, Kim HO. The likelihood of achieving pregnancy through timed coitus in young infertile women with decreased ovarian reserve. Clin Exp Reprod Med 2018;45:31-7. https://doi.org/10.5653/cerm.2018.45.1.31

Cited by

  1. Loss of the E2 SUMO-conjugating enzyme Ube2i in oocytes during ovarian folliculogenesis causes infertility in mice vol.146, pp.23, 2019, https://doi.org/10.1242/dev.176701
  2. Cross-sectional and prospective study on anti-Müllerian hormone changes in a cohort of pre-menopausal women with a history of differentiated thyroid cancer vol.13, pp.1, 2019, https://doi.org/10.1186/s13044-020-0075-z
  3. Polycystic ovary syndrome, amenorrhea and the diagnostic role of anti-Müllerian hormone vol.45, pp.4, 2019, https://doi.org/10.23736/s0391-1977.20.03390-8
  4. Effect of a dual trigger on oocyte maturation in young women with decreased ovarian reserve for the purpose of elective oocyte cryopreservation vol.47, pp.4, 2020, https://doi.org/10.5653/cerm.2020.03657
  5. Age-specific distribution of serum anti-mullerian hormone and antral follicle count in Indian infertile women vol.14, pp.4, 2021, https://doi.org/10.4103/jhrs.jhrs_65_21
  6. Anti-mullerian hormone levels in indian women seeking infertility treatment: Are Indian women facing early ovarian senescence? vol.14, pp.4, 2019, https://doi.org/10.4103/jhrs.jhrs_71_21
  7. Use of AMH in the Differential Diagnosis of Anovulatory Disorders Including PCOS vol.11, 2019, https://doi.org/10.3389/fendo.2020.616766
  8. Adverse Effects of Selected Markers on the Metabolic and Endocrine Profiles of Obese Women With and Without PCOS vol.12, 2021, https://doi.org/10.3389/fendo.2021.665446
  9. The Relationships Between Serum DHEA-S and AMH Levels in Infertile Women: A Retrospective Cross-Sectional Study vol.10, pp.6, 2021, https://doi.org/10.3390/jcm10061211
  10. Interpretation and significance of the definition of anti-Mullerian hormone in the practice of juvenile gynaecologist vol.23, pp.3, 2021, https://doi.org/10.26442/20795696.2021.3.200779
  11. Checkpoint inhibitors, fertility, pregnancy, and sexual life: a systematic review vol.6, pp.5, 2019, https://doi.org/10.1016/j.esmoop.2021.100276
  12. A systematic review and meta-analysis of the association between vitamin D and ovarian reserve vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-021-95481-x
  13. Effectiveness and safety of Bushen Huoxue granules in treatment of premature ovarian insufficiency: study protocol for a randomized, double-blinded, placebo-controlled, and multicenter clinical trial vol.22, pp.1, 2019, https://doi.org/10.1186/s13063-021-05838-w