References
- Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
- Abualnour, M., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
- Altekin, M. (2017), "Free transverse vibration of shear deformable super-elliptical plates", Wind Struct., 24(4), 307-331. https://doi.org/10.12989/was.2017.24.4.307.
- An, C., Gu, J. and Su, J. (2015), "Exact solution of bending of clamped orthotropic rectangular thin plates", J. Braz. Soc. Mech. Sci. Eng., DOI 10.1007/s40430-0329-1.
- Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
- Bao, S. and Wang, S. (2017), "A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates", Roy. Soc. Open Science, 4(8), doi: 10.1098/rsos.170484.
- Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.
- Berferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
- Bouafia, K.A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
- Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S., Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061.
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A., (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
- Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
- Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. http://dx.doi.org/10.12989/scs.2016.21.6.1287.
- Chen, W., Ye, L.J. and Sun, H.G. (2010), "Fractional diffusion equation by the Kansa method", Comput. Mathod. Appl. M., 59, 1614-1620. https://doi.org/10.1016/j.camwa.2009.08.004.
- Du, R., Cao, W.R. and Sun, Z.Z. (2010), "A compact difference scheme for the fractional diffusion-wave equation", Appl. Math. Model, 34(10), 2998-3007. https://doi.org/10.1016/j.apm.2010.01.008.
- Fadodun, O.O. and Akinola, A.P. (2017), "Bending of an isotropic non-classical thin rectangular plate", Struct. Eng. Mech., 61(4), 437-440. https://doi.org/10.12989/sem.2017.61.4.437.
- Fadodun, O.O., Borokinni, A.S., Layeni, O.P. and Akinola, A.P. (2017a), "Dynamics analysis of a transversely isotropic nonclassical thin plate", Wind Struct., 25(1), 25-38. https://doi.org/10.12989/was.2017.25.1.025.
- Fadodun, O.O., Layeni, O.P. and Akinola, A.P. (2017b), "Fractional wave propagation in radially vibrating non-classical cylinder", Earthq. Struct., 13(5), 465-471. https://doi.org/10.12989/eas.2017.13.5.465.
- Fu, Z.J., Chen, W. and Yang, H.T. (2013), "Boundary particle method for Laplace transformed time fractional diffusion equations", J. Comput. Phys., 235, 52-66. https://doi.org/10.1016/j.jcp.2012.10.018.
- Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143.
- Hadji, L., Khelifa, Z. and Adda Bedia, E.A. (2016), "A new higher-ordershear deformation model for functionally graded beams", J. Civil Eng.- KSCE, 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0
- Hebali, H., Tounsi, A., Houari, M.S.A. and Bessaim, A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech.- ASCE, 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Jaroszewick J. (2017), "Natural frequencies of axisymmetric vibration of thin hyperbolic circular plates with clamped conditions", Int. J. Appl. Mech. Eng., 22(2), 451-457. DOI: 10.1515/ijame-2017-0028.
- Khalil, R., Al Horani, M., Yousef, A. and Sababheh, M. (2014), "A new definition of fractional derivative", J. Comput. Appl. Mech., 264(1), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
- Lal, R. and Saini, R. (2016), "Mode shapes and frequencies of thin rectangular plates with arbitrarily varying non-homogeneity along two concurrent edge", J. Vib. Control, 23(17), 2841-2865. https://doi.org/10.1177/1077546315623710.
- Li, X. (2014), "Analytical solution to a fractional generalized two phase Lame-Clapeyron Stefan problem", Int. J. Numer. Method. Heat. Fluid Fl., 24(6), 1251-1259. https://doi.org/10.1108/HFF-03-2013-0102
- Lindsay, A.E., Hao, W. and Sommese, A.J. (2015), "Vibrations of thin plates with small clamped patches", Proceedings of the Royal Society A, doi: 10.1098/rspa.2015.0474.
- Liu, M.F. and Chang, T.P. (2010), "Closed form expression for the vibration of a transversely isotropic magneto-electro-elastic plate", J. Appl. Mech. T. - ASME, 77, doi: 10.1115/1.3176996.
- Lychev S.A., Lycheva, T.N. and Manzhirov, A.V. (2011), "Unsteady vibration of a growing circular plate", Mech. Solids, 46(2), 325-333. https://doi.org/10.3103/S002565441102021X
- Park, I., Lee, U. and Park, D. (2015), "Transverse vibration of the thin plates: Frequency-domain spectral element modeling and analysis", Math. Problem Eng., doi: 10.1155/2015/541276.
- Rao, S.S. (2007), "Vibration of continuous system", John Willey and Sons, Inc, Hobokean, New Jersey, U.S.A.
- Senjanovic, I., Hadzic, N. and Vladimir, N. (2015), "Vibration analysis of thin circular plates with multiple openings by the assumed mode method", Proceeding of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 231(1), 70-85. https://doi.org/10.1177/1475090215621578
- Shooshtari, A. and Razavi, S. (2015), "Nonlinear vibration analysis of rectangular magneto-electro-elastic thin plates", IJE T. A, 28 (1), 136-144. doi: 10.5829/idosi.ije.2015.28.01a.18.
- Tahouneh V. (2018), "3-D Vibration analysis of FGMWCNTs/Phenolic sandwich sectorial plates", Steel Compos. Struct., 26 (5), 649-662. https://doi.org/10.12989/scs.2018.26.5.649.
- Treeby, B.E. and Cox, B.T. (2010), "Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian", J. Acoust. Soc. Am., 195(5), 2741-2748. https://doi.org/10.1121/1.3377056
- Ventsel, E. and Krauthammer, T. (2001), "Thin plate and shell theory, analysis and application", Marce Dekker, Inc., New York and Basel NY, USA.
- Younsi, A., Tounsi, A. and Zhora, Z.F. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
- Zhong, Y., Zhao, X. and Liu, H. (2014), "Vibration of plate on foundation with four edges free by finite cosine integral transform method", Latin Am. J. Solids Struct., 11(5), 854-863. http://dx.doi.org/10.1590/S1679-78252014000500008.